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1 Nuclear dimensions

² Nuclear size may be probed with scattering experiments, such as Rutherford's bombardment
of a gold foil with alpha-particles which established the nuclear model of the atom, or electron
scattering. Bombarding particles must have de Broglie wavelengths (given by p = h=¸) smaller
than the nuclear size of a few fm to actually probe the nuclear structure; this requires p ¸ 10¡19
kg m s¡1; for electrons the corresponding energy E = (p2c2 +m2c4)1=2 » (10¡21 + 10¡26)1=2
J is about 200 MeV (requires an accelerator), while for alphas it is about 5 MeV (obtainable
from natural radioactivity).

² Deducing nuclear size from scattering is not straight-forward. Experiments suggest a simple
nuclear charge density distribution which is almost constant except for the surface region,
described by the model

½ch(r) =
½0ch

1 + e(r¡R)=a

where ½0ch, R and a are adjustable parameters. It is found that R ¼ 1:12A1=3 fm, and a ¼ 0:52
fm.

² The density ½0ch probes the proton distribution. Assuming that neutrons are spread uniformly
in the same volume, the nuclear density in most of the nucleus is about 0.17 nucleons fm¡3.

2 Binding energy

² The binding energy of a nucleus is a very important characteristic for stability, because of the
various ways in which a nucleon can change to another or escape altogether. If the binding
energy of the initial state is less than the total of the ¯nal states, decay (conversion of one
system into a di®erent one) is possible.

² The binding energy B(Z;N) may be measured directly by disassembling a nucleus, but it is
often convenient to measure it by measuring the mass of the nucleus, or of the (usually neutral)
atom:

ma(Z;N) = Z(mp +me) +Nmn ¡B(Z;N)=c2 ¡ be=c2

where be is the total electronic binding energy, ranging from 13.6 eV for H to several hundred
keV for uranium.

² If we look at binding energy of light nuclei, we ¯nd (1) an average binding energy per nucleon
that rises rapidly from about 1 MeV per particle for the deuteron to near 8 MeV per particle,
(2) relatively high binding energy per nucleon for \even-even" nuclei such as 126 C, and (3)
rather small binding energy of the \last" nucleon for nuclei with one particle above even-
even, rising to considerably larger values for the last nucleon as the next even-even nucleus is
approached. There is clearly some important binding energy associated with neutron-neutron
and proton-proton pairing.
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² The binding energy per nucleon of 42He is so high that it is energetically advantageous for 84Be
to break up into two He nuclei, in spite of its even-even nature. This is an example of the ease
with which He nuclei (alpha particles) can be formed.

3 The semi-empirical mass formula

² The total binding energy of nuclei of various (Z;N) combinations may be ¯tted by a reasonably
accurate approximate formula involving only a few parameters. One form of this equation is

B(Z;N) = aA¡ bA2=3 ¡ s (N ¡ Z)2
A

¡ dZ2

A1=3
¡ ±

A1=2
;

where the parameters are determined by ¯tting the ensemble of measured binding energies.
The best ¯ts for this form are

a = 15:835 MeV

b = 18:33 MeV

s = 23:20 MeV

d = 0:714 MeV;

and ± is 0 for even-odd nuclei, +11:2 MeV for odd-odd nuclei, and ¡11:2 MeV for even-even
nuclei.

² In this formula, the various terms all have physical interpretations. The ¯rst term represents
the mean energy per nucleon, approximately constant over the periodic table because the strong
force, with its very short range, only binds nearest neighbors together. The second term is
a surface term which re°ects the decrease in binding energy due to nucleons on the surface
where they are bound to fewer other nucleons than interior nucleons are. The fourth term
describes the repulsive in°uence of the positive charges of the protons, and is approximately
equal to the total energy of repulsion of a uniform sphere of total charge Ze within radius R.

² The third term re°ects the e®ect of the exclusion principle, and is the simplest form that forces
N to be approximately equal to Z. The reason for this \symmetry" term is that if we think
of the energy levels within the nucleus as single-particle states like atomic orbitals, we can put
two protons (spin up and spin down) into each level, and two neutrons. If we replace one of
the protons by a neutron, the new neutron cannot go in the level of the former proton, but
must go to the next level up. Thus it must have a higher energy than the proton it replaces.
This e®ect favours N = Z. The A in the denominator makes this term proportional to the
total number of nucleons for a ¯xed ratio N=Z.

² Finally, the term with ± describes the strong tendency of identical nucleons to prefer to occur
in pairs. Thus even-even nuclei are on average considerably more strongly bound than odd-odd
nuclei even if the last nuclear orbital is un¯lled. The 1=A1=2 dependence is empirical; it re°ects
the fact that the pairing energy contribution is smaller in heavy nuclei than light ones.

4 The valley of ¯-stability

² Many nuclei are observed to be unstable: they spontaneously change into other nuclei by
emission of one or more particles. The two common kinds of decay of naturally occurring
nuclei are

1. beta-decay: emission of an electron or positron, or absorption of an atomic electron, with
conversion of a proton into a neutron or vice versa. An example is

137
55 Cs! 137

56 Ba + e
¡ + ¹ºe:
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2. alpha-decay: emission of a 42He nucleus (an alpha-particle). An example is

235
92 U! 231

90 Th + ®:

² Such decays occur when the nucleus in question can go to a state of lower energy by the decay,
and enough energy is available from the transition to supply what is needed for the decay (e.g
to create an electron and a neutrino).

² Consider beta-decay. In this decay, no nucleons are lost by the nucleus, so A stays constant,
while Z ! Z § 1 and N ! N ¨ 1.

² Although simple, the binding energy formula is accurate enough to predict correctly { in almost
all cases { which nuclei are stable against beta-decay. Using our simple form, and substituting
A¡ Z for N , the mass of a particular atom is

ma(Z;N)c
2 = [Nmn + Z(mp +me)]c

2 ¡
h
aA¡ bA2=3 ¡ d Z2

A1=3 + s
(N¡Z)2

A + ± 1
A1=2

i
= (Amnc

2 ¡ aA+ bA2=3 + sA+ ±A¡1=2)¡ (4s+ (mn ¡mp ¡me)c
2)Z

+(4sA¡1 + dA¡1=3)Z2:

This expression is a parabola in Z, opening upward.

² For odd A, ± = 0 both before and after a beta-decay, since either Z or N is odd both before
and after decay. In this case, we may ¯nd the most stable Z value for a given A by ¯nding the
minimum of the expression above:

Z =
[4s+ (mn ¡mp ¡me)c

2]A

2(4s+ dA2=3)
:

The actual Z of lowest energy, Zmin, is the integer value nearest the computed Z. Since
dA2=3 = 0:714A2=3 MeV is larger than (mn ¡mp ¡me)c

2 = 0:78 MeV for A ¸ 2 we see at
once that Zmin · A=2 and N ¸ Zmin.

² Since the º is (nearly) massless, beta-decay is possible if
mnuc(Z;A) > mnuc(Z + 1; A) +me:

Adding Zme to each side, this may be expressed using atomic masses as

ma(Z;A) > ma(Z + 1; A):

² If Z > Zmin, decay can occur by positron emission if mnuc(Z;A) > mnuc(Z ¡ 1; A) +me or
ma(Z;A) > ma(Z ¡ 1; A) + 2me.

² In an atom, another process that competes with positron emission is electron capture or K-
capture. The nucleus absorbs an electron from its cloud (usually from the K shell), converting
a proton to a neutron and emitting a neutrino. K-capture is possible if mnuc(Z;A) +me >
mnuc(Z¡1); A)+be=c2, or ma(Z;A) > ma(Z¡1); A)+be=c2. The binding energy be that must
be supplied by the capture may be as much as 100 keV, but this is less than the two electron
masses required by positron emission, so K-capture may be possible when ¯+-emission is not.

² We thus expect that there will be only one stable isobar of a given odd A. This is in fact the
case.

² Nuclei with even A either have both Z and N even, or both odd. Beta-decays will change an
odd-odd nucleus to an even-even one, and vice versa. For these two situations, the binding
energy term in ± has opposite signs, so there will be two mass parabolas for ¯xed A as a
function of Z, one 2±=A1=2 above the other. Again ¯¡ or ¯+ decays are possible from higher
to lower mass atoms, but now we generally expect to ¯nd one, two, or even three minimum Z
values on the lower parabola, separated by higher odd-odd nuclei, and no minimum Z values
on the upper parabola. This is observed to be true with two exceptions, 5023V and

180
73 Ta.
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² An example (from third-year lab) of successive decays for even A leading to stability is

90
38Sr! 90

39Y + ¯
¡ + ¹ºe + 0:54 MeV

followed by
90
39Y! 90

40Zr + ¯
¡ + ¹ºe + 2:27 MeV:

The Zr is stable. Note that the second decay releases more energy than the ¯rst.

² To summarize, for given A (isobars) we expect to ¯nd only one stable Z if A is odd, and one,
two or three if A is even. Furthermore, the trend of beta-stable nuclei in a diagram plotting
N against Z (a \Chart of the Nuclides") is accurately reproduced.

5 Alpha-decay and ¯ssion

² The binding energy per nucleon, B(Z;A)=A, may be plotted as a function of A for the stable
nuclei of Zmin. If the plot is restricted to odd-A nuclei, the scatter is quite small. B(Z;A)=A
rises from just over 1 MeV per nucleon in the deuteron to about 8.7 MeV per nucleon for the
elements around iron (Z ¼ 26, A ¼ 56). From there it declines slowly to below 7.8 MeV per
nucleon beyond A ¼ 200.

² The positive binding energy is entirely contributed by the strong nuclear interaction, dimin-
ished somewhat by surface e®ects and by the e®ects of a di®erence betweenN and Z. However,
the e®ect that actually causes B(Z;A)=A to decline above A ¼ 60 is the increasing Coulomb
repulsion among the nucleons. Because the strong force acts only between nearest neighbors,
it increases only as A (not A2), while the electrostatic repulsion increases about as Z2, and
thus becomes more important as A and Z increase.

² The fact that the binding energy per nucleon B=A decreases beyond A ¼ 60 means that decays
in which the nucleus breaks into two smaller pieces may be able to release energy, and thus
become possible.

² Of such decays, alpha-instability is the most common, because the decay leads to ejection of a
tightly bound 4

2He nucleus, making the 28.3 MeV binding energy of this nucleus available. All
nuclei of A > 165 can release energy by ejecting an alpha-particle, but (as we will see later)
the rate is often so slow as to be insigni¯cant even over the age of the universe.

² Another possible decay mode is ¯ssion, in which a heavy nucleus breaks into two smaller,
roughly equal fragments, each with higher B=A than the original nucleus.

6 The nuclear potential well

² The semi-empirical mass formula describes the stability behaviour of nuclei quite well. How-
ever, although we presented arguments for the form of each term, we ¯xed the coe±cients
purely empirically. We now look at simple quantum models of the nucleus and see what kinds
of quantitative conclusions may be drawn about nuclear structure from such models.

² Consider what kind of potential we need to write down the Hamiltonian of the system. We
do not know the details of the nuclear interaction. Let's suppose, as in many-electron atoms,
that each individual nucleon moves in a spherically symmetric potential created by the other
nucleons. This potential, because of electrostatic repulsion, will be somewhat di®erent for
protons than for neutrons. Since there is no attracting centre to the system (analogous to
the atomic nucleus in a many-electron atom) we expect that the nuclear potential may be
roughly describable as a strong force preventing each nucleon from leaving the nucleus, but
the apparently uniform density within the nucleus suggests that there is no strong tendency
for nucleons to be in any one part of the nucleus rather than another.

4



² This suggests that we could roughly describe the nuclear potential as a simple rectangular
potential well with a °at °oor. For neutrons, the well would have a depth and radius, and be
zero outside the nucleus. For protons the well would be raised by electrostatic repulsion, and
outside the nucleus would fall o® to 0 at in¯nity from a substantial positive value. To really
simplify matters, however, let's start by taking the wells to be in¯nitely deep.

² Now we estimate the parameters of these two wells. Note that nucleons are fermions, and
thus obey the exclusion principle. Thus we expect that { roughly { they will ¯ll up the lowest
states in the nuclear potential, up to some upper level EF. Each state will have one neutron
and one proton of each spin direction. To estimate how many states are available, we need a
very useful result concerning the density of states that we have met before.

² Consider the solution of the Schroedinger equation in a large box with sides at x = 0 and L,
y = 0 and L, z = 0 and L. The potential is zero inside the box, and in¯nite outside. In the
box,

¡ ¹h
2

2m
r2Ã(x; y; z) = EÃ(x; y; z):

We can clearly separate variables. Solutions satisfying Ã = 0 on the boundaries of the box are

Ã(x; y; z) = A sin(kxx) sin(kyy) sin(kzz)

where the wave numbers must satisfy

kx = ¼nx=L;

etc, with nx, ny and nz positive integers, and (from the Schroedinger equation)

E = ¹h2(k2x + k
2
y + k

2
z)=2m:

² The states with energies less than some particular energy (Emax, say) are all the values of kx,
etc for which E · Emax. Now the allowed states are uniformly spaced in k-space because of
the relationship between kx and nx, etc, and in a small volume of k-space of ¢kx¢ky¢kz there
are ¢nx¢ny¢nz = (L=¼)

3¢kx¢ky¢kz states. Thus the total number of of allowed states in
the box of energy up to Emax is

N (Emax) = (2)(1
8
)
4¼

3
k3max

µ
L

¼

¶3
=

V

3¼2

µ
2mEmax

¹h2

¶3=2
;

where the factor 2 comes from two spin states, the factor 1=8 is the volume fraction in the
quadrant having all positive values of kx, etc (only positive values lead to distinguishable
states), and V is the total volume of the box.

² Now apply this result to our nucleus. We have noted that the number densities of neutrons
and protons are nearly equal and are constant independent of A, each at about 0.085 nucleons
fm¡3. Equating this value to the N (Emax)=V above, we deduce that the neutron (and proton)
energy states in the nucleus will be ¯lled up to a maximum (Fermi) energy EF of about 38
MeV above the bottom of the nuclear potential well.

² The approximation above assumes an in¯nitely deep well, but does not change very much for a
potential well of ¯nite depth. We can estimate the total depth of the well by recalling that the
typical binding energy per nucleon is about 8 MeV, so the total depth of the nuclear potential
well is roughly 46 MeV.

² Using this simple model of single-nucleon states in the nuclear potential well, we can easily see
what happens in nuclear beta-decay, when there is (say) an excess of protons over neutrons
in the nucleus: a proton can release enough energy by becoming a neutron and dropping into
a lower unoccupied neutron state to pay for the energy required to create the positron and
neutrino.
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7 Angular momentum of nuclear energy levels

² We may get more information about the nuclear energy levels in a nucleus by solving the
Schroedinger equation for the well in three dimensions. For simplicity we assume again an
in¯nitely deep well, so that the wave function of a proton or neutron is completely con¯ned
within a region of radius R around the origin of coordinates, and goes to zero on the boundary.

² Because we have assumed that the mean potential in which each nucleon moves is spheri-
cally symmetric, we know that the solution is separable. As before, we have Ã(r; µ; Á) =
ul(r)Ylm(µ; Á), with the spherical harmonics of de¯nite angular momentum quantum numbers
l and ml describing the angular variation, and the radial wave function ul(r) satisfying

¡ ¹h2

2mn

1

r

d2

dr2
(rul) +

¹h

2mn

l(l + 1)

r2
ul = Eul:

The boundary conditions are that ul(0) is ¯nite and ul(R) = 0.

² For l = 0 it is easy to verify that the solution is

us(r) =
sin kr

kr
;

with E = ¹h2k2=2mn. To satisfy the boundary condition at R, k must satisfy k = kn;s = n¼=R.
This condition de¯nes a series of l = 0 (s-state) energy levels of energies

E(n; s) =
¹h2

2mn

³n¼
R2

´2
:

² For l = 1 (p states), the Schroedinger equation becomes

¡ ¹h2

2mn

1

r

d2

dr2
rup +

¹h

2mn

1

r2
up = Eup;

and the solution is

up(r) =
sin kr

(kr)2
¡ cos kr
(kr)

:

Again the boundary condition at r = R requires up(R) = 0. This condition is satis¯ed for a
series of k values; the ¯rst few zeros of up(R) are at kn;pR = 4:49; 7:73; 10:90 : : :. For each
kn;p we have a corresponding energy level E(n;p), interleaved with the energy levels of the
s-states.

² In general, the solutions of the Schroedinger equation for arbitrary l are the spherical Bessel
functions

jl(kr) = (¡kr)l
µ
1

k2r

d

dr

¶lµ
sin kr

kr

¶
:

For each l, acceptable values of k are those which make jl(kR) = 0. These zeros of the
solution de¯ne a series of energy levels, interleaved with the levels of other values of l. In
nuclear physics, we number these levels sequentially for each l, so the lowest few energy levels
are 1s, 1p, 1d, 2s, 1f, 2p, 1g, 2d, 1h, 3s, etc. With degeneracy with respect to ml and spin,
there are 2(2l + 1) states of the same energy in each level (i.e. this number of protons and of
neutrons may occupy \one" energy level).

² Thus, for this simple model, we ¯nd a series of energy levels, each of which can be occupied
by only a limited number of protons and neutrons, and each of which has de¯nite angular
momentum. The situation is very reminiscent of atomic orbitals.

² This model can be improved in obvious ways, by making the well ¯nite in depth rather than
in¯nite, and by \softening" the outer boundary somewhat. It is found that these improvements
lower the energy levels (relative to the ground state) somewhat, compared to the simple well
with in¯nite walls, but do not change the order of single-nucleon levels much.
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8 Magic numbers and spin-orbit coupling

² An important test of the shell model is the prediction of binding energy jumps analogous to
those found in atoms for the ¯lled shell con¯gurations of the noble gases. For atoms, it is
observed that the energy required to ionize a noble gas is three or four times larger than that
required to ionize an atom which has one more electron than a noble gas (e.g. Ne and Na, Ar
and K, Kr and Rb). For nuclei, a similar phenomenon is observed in several ways.

1. Nuclei with certain values of Z (2, 8, 20, 28, 50, 82, 126) have unusually large numbers
of stable isotopes.

2. Similarly, unusually large numbers of isotones are found when N has these same values.

3. Nuclei with Z or N near one of these numbers tend to be more spherical than usual (i.e.
to have relatively small quadrupole moments).

4. If we plot the energy required to separate the last neutron from a nucleus as a function
of N and A, relatively large gaps are found at the same numbers mentioned above.

These numbers are usually referred to as magic numbers.

² The simple shell model we have discussed predicts relatively large energy jumps after ¯lling of
the 1s, 1p, 2s, 1f, 2p, 1g, 1h, and 3p levels, which occur with 2, 8, 20, 34, 40 58, 92, and 138
neutrons or protons. The energy level spacing is thus not accurately predicted by this version
of the shell model.

² The explanation was found independently by Maria Meyer and by O. Haxel et al in the late
1940's. They assumed that there is a strong coupling between L and s (note that generally
there will be either zero or one unpaired spin, and s = 1=2), so that the potential seen by
a nucleon contains not only the spherically symmetric term but also a term Uso(r)L ¢ s. In
this case, L2 and s2 are still good quantum numbers (conserved) because they commute with
L ¢ s. Total angular momentum J is of course also conserved. However, since Lz and sz do
not commute with L ¢ s, they are no longer good quantum numbers. Nuclear states are then
labeled with quantum numbers (l; s; j; jz).

² The expectation value of L ¢ s = (J2 ¡L2 ¡ s2)=2 is [j(j + 1)¡ l(l+ 1)¡ s(s+ 1)]¹h2=2, which
has the value l¹h2=2 when j = l + 1

2 (L and s are parallel) and ¡(l + 1)¹h2=2 when j = l ¡ 1
2

(L and s anti-parallel). This interaction energy splits each level (n; l), which is 2(2l+1)-times
degenerate, into two separate levels that we label nlj = nll+ 1

2
and nll¡ 1

2
.

² By taking the size of the spin-orbit splitting to be quite large (and opposite to that found in
atomic electron clouds), it is possible to get the energy levels of the nuclear orbital shells to
show splitting at the observed magic numbers.

² The shell model also predicts, for the most part correctly, the angular momentum of nuclear
ground states. To predict these, note that we expect that all completely ¯lled shells will
contribute zero angular momentum (and positive parity). In partly ¯lled shells, it appears that
nucleons have a strong tendency to form pairs with opposite jz values. Thus even numbers
of nucleons in an un¯lled shell still contribute zero angular momentum. The ground state
angular momentum is determined by the remaining unpaired nucleon(s). For even-Z, even-N
(even-even) nuclei, all nucleons will be paired, the total angular momentum will be zero, and
the parity will be positive. For odd-even nuclei, the angular momentum j and parity of the
ground state will be those of the single unpaired particle; the parity will thus be (¡1)l, and
the angular momentum will be that of the shell currently being ¯lled. For odd-odd nuclei,
there is no systematic result.
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9 Nuclear magnetic dipole moments

² In the shell model, we expect that even-even nuclei will have all orbital and spin angular
momenta paired, so there will be no residual orbital or intrinsic spin currents, and no magnetic
dipole moment. This prediction is in agreement with experiments.

² For odd-even nuclei, there is one unpaired nucleon. We expect that this nucleon will contribute
a magnetic moment due to its orbital motion

¹L = eL=2mp = ¹N(L=¹h)

for a proton, but 0 for a neutron. There will also be a contribution from the intrinsic spin

¹s = gs¹N(s=¹h);

where gs is 5.59 for a proton and ¡3:83 for a neutron. Since neither L nor s has a de¯ned
z-component, the observed nuclear magnetic dipole moment should be the projection of the
vector sum of the two individual magnetic moment components along the axis of the one vector
de¯ned for the nucleus, J.

² To calculate the component of ¹ along J, take the dot product of J with the operator

¹ = ¹L + ¹s = ¹N(gLL+ gss)=¹h = ¹N[(gL + gs)(L+ s) + (gL ¡ gs)(L¡ s)]=2¹h;

giving
¹ ¢ J = ¹N[(gL + gs)J2 + (gL ¡ gs)(L2 ¡ s2)]=2¹h:

Taking the expectation value of both sides of this expression, we ¯nd

¹ = (¹N=2)

·
(gL + gs)j + (gL ¡ gs)(l ¡ s)(l + s+ 1)

(j + 1)

¸
:

Now recall that s = 1
2 and j = l§ 1

2 , and ¯nd the expected magnetic moment from the unpaired
nucleon to be

¹ = ¹N

·
jgL ¡ 1

2
(gL ¡ gs)

¸
for j = l + 1

2 and

¹ = ¹N

·
jgL ¡ j

2(j + 1)
(gL ¡ gs)

¸
for j = l ¡ 1

2 .

² These two values are called the \Schmidt lines" in a plot of ¹ versus j. It is found that the
observed magnetic moments mostly fall between these two values, not on them. This may be
due to mixing of shell model states, or to a change in the intrinsic magnetic moments of the
proton and neutron in the nuclear environment.
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