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1 Nature of molecules; energies of molecular mo-

tions

Molecules are of course atoms that are held together by shared valence electrons. That
is, most of each atom is pretty much as it would be if the atom were isolated, but
one or a few electrons are located in regions (for example, between two atomic cores)
where they lead to an overall attractive e®ect. To see roughly how this works, you
might consider the case of two protons and two electrons at the corners of a square.
If you calculate (classically) the total electrostatic energy of this arrangement, you
will ¯nd that it is negative { the system is bound.
Molecules have several kinds of motion, with quite di®erent energy scales. Assume

that a couple of nuclei and a couple of electrons are con¯ned to a volume with char-
acteristic size a (a couple of ºA, typically). Then the uncertainty principle requires
that at a minimum, p » ¹h=a, so the typical electron energies will be of order

Ee » p2=2m » ¹h2=ma2;
while the purely nuclear motion of rotation for nuclei of mass M will have sizes like

Er » ¹h2=Ma2 » (m=M)Ee:
The nuclear rotation energy may also be estimated using our previous solution for
the rigid rotator, in which the energy of the lowest level was found to be of order
¹h2=I » ¹h2=Ma2. Thus nuclear rotation will involve energies that are of order 10¡4

times smaller than electronic energies.
The nuclei may also participate in vibrations, in which they interact directly

with the electron cloud. The energies of such motions are larger than Er, and may be
estimated by treating the interaction between electrons and nuclei as simple harmonic
motion with a spring constant k, the same (of course) for both parties. In this case
the ratio of electronic (Ee) to nuclear vibrational energies (Ev) will be of order

Ev
Ee
» ¹h!v
¹h!e

» ¹h(k=M)1=2

¹h(k=m)1=2
»
µ
m

M

¶1=2
:

Thus we have three rather di®erent energy scales, rotational, vibrational, and elec-
tronic, a fact which will help us to study simple molecular structure.
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2 Diatomic molecules: the adiabatic approxima-

tion

Consider the SchrÄodinger equation for a system of two identical nuclei and two elec-
trons, in the centre of mass system of the nuclei, neglecting spin:

[TN + T1 + T2 + V ]Ã(R; r1; r2) = EÃ(R; r1; r2)

where

TN + T1 + T2 =

"
¡ ¹h

2

2¹
r2
R ¡

¹h2

2m
r2
r1
¡ ¹h2

2m
r2
r2

#
;

V = ¡ Ze2

(4¼"0)jr1 ¡R=2j ¡
Ze2

(4¼"0)jr1 +R=2j +
e2

(4¼"0)jr1 ¡ r2j +
Z2e2

(4¼"0)R
;

R is the separation of the nuclei, and r1 and r2 are the positions of the two electrons.
We will solve this system by a separation and some approximations. Because the

electrons are much lighter than the nuclei, the nuclei will hardly move at all in the
time that an electron takes to \orbit" once, so let's suppose that we can solve the
simpler problem of electron motion in the presence of motionless nuclei separated by
a ¯xed R, for which the electronic wave equation is

(T1 + T2 + V )©q(R; r1; r2) = Eq(R)©q(R; r1; r2):

The energies Eq(R) of this system depend parametrically on R. Because these wave
functions form a complete set, we may expand the exact wave function in them:

Ã(R; r1; r2) =
X
q

Fq(R)©q(R; r1; r2):

The coe±cients Fq(R) are the wave functions describing the nuclear motion when the
electrons are in the state q.
To ¯nd equations satis¯ed by the Fq(R)'s, put Ã into the exact SchrÄodinger equa-

tion and projects using each of the ©s's:X
q

h©?sj[TN + T1 + T2 + V ¡ E]Fq(R)j©qi = 0:

Using the equation satis¯ed by the ©'s, we getX
q

h©?sjTNFq(R)j©qi+ [Es(R)¡E]Fs(R) = 0:

The complicated part of this is the action of TN on the product ©qFq, since both
depend on R:

TNFq©q = ¡ ¹h
2

2¹
[Fqr2

R©q + 2rRFq ¢ rR©q +©qr2
RFq]:

We now make the adiabatic or Born-Oppenheimer approximation by assuming
that we can neglect jrR©qj compared to jrRFqj. In this case, we get the nuclear
wave equation "

¡ ¹h
2

2¹
r2
R + Es(R)¡E

#
Fs(R) = 0:
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3 Nuclear motions: rotation and vibration

The equation for Fs is in the form of a wave equation with the function Es(R) playing
the role of potential energy. Let us consider the speci¯c case of the electrons in a state
of zero orbital angular momentum. In this case, Es(R) = Es(R) is a function only
of the radial variable R, and the wave equation for Fs becomes one for a spherically
symmetric potential. In this case, the Hamiltonian commutes with J2 and Jz. The
simultaneous eigenfunctions of these operators are the spherical harmonics, and have
eigenvalues J(J + 1)¹h2 and MJ .
Since there is no privileged direction in space, the total energy of the system

cannot depend on MJ , but it does depend on J . (You may wonder why the direction
of R is not a privileged direction now. It is for the electron cloud, but in a spherically
symmetric electron potential, it is just a coordinate as far as the nuclei are concerned.
Thus R can rotate in space, and the nuclei may have non-zero angular momentum.)
It will be found that there is also another quantum number in the system, v, which
acts as a principal quantum number and will be found to number vibrational states.
Thus we may write (dividing the radial function by R to get a simple form for the
resulting equation)

Fs(R) = (Fs
v;J(R)=R)YJ;MJ

(£;©):

We substitute this into the wave equation for Fs(R) and ¯nd that the functions Fs
v;J

satisfy "
¡ ¹h

2

2¹

Ã
d2

dR2
¡ J(J + 1)

R2

!
+ Es(R)

#
Fs
v;J = Es;v;JFs

v;J :

Now in a bound molecular state, the energy Es(R) varies from the sum of the
energies of the two atoms separately for large R, through a local minimum, to a large
positive value as the two nuclei get close to one another. We may approximate the
minimum region of Es(R) by a second order expansion:

Es(R) ¼ Es(R0) + 1
2
k(R¡R0)2;

where

k =
d2Es
dR2

¯̄̄̄
¯
R=R0

:

In the same spirit, evaluate the term with J at R = R0, and call this quantity Er:

Er =
¹h2

2¹R20
J(J + 1) =

¹h2

2I0
J(J + 1) = BJ(J + 1);

where I0 = ¹R20 is the moment of inertia for the reduced mass ¹ and B is known
as the rotational constant of the molecule. Now if we write Es;v;J as a sum of the
minimum electronic energy, the rotational energy, and a (still unknown) quantity Ev,
we see that the equation for Fs

v;J becomes"
¡ ¹h

2

2¹

d2

dR2
+
k

2
(R¡R0)2

#
Fs
v;J = EvFs

v;J ;
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the familiar simple harmonic oscillator equation, so we see immediately that the
energies Ev are given by

Ev = ¹h!0(v + 1
2
); v = 0; 1; 2; : : :

Because of the relative sizes of Er and Ev, each vibrational level is split into a number
of closely spaced rotational levels.

4 Diatomic molecules: electronic structure

4.1 Classi¯cation of electronic states

For the electron cloud, the (slowly rotating) internuclear axis R picks out a direction
in space which we take as the z-axis. The electronic structure of the molecule is
invariant under rotation around this axis, so Lz commutes with H. However, L

2, Lx
and Ly do not commute with H. The electronic eigenstates ©s of H may also be
made to be eigenstates of Lz, so that

Lz©s = §¤¹h©s; ¤ = 0; 1; 2; : : :

where ¤ is the absolute value of the projection of the total electronic angular momen-
tum on the internuclear axis. We label states of the electron cloud by their ¤ values
with a system like that used in atomic spectroscopy: ¤ = 0; 1; 2; : : : states are called
§, ¦, ¢, etc.
Diatomic molecules are symmetric to re°ections through planes including R, such

as the xz plane. Thus if operator Ay does this,

[Ay; H] = 0;

but since Lz = ¡i¹h(x@=@y ¡ y@=@x),
AyLz = ¡LzAy;

which means that { if ¤ 6= 0 { Ay converts an eigenstate with eigenvalue ¤¹h into
one of ¡¤¹h. But because of commutation of Ay with H, both states have the same
energy, and such states are degenerate: two states of di®erent Lz eigenvalues have
the same energy (spin e®ects may break this, an e®ect called ¤-doubling).
If ¤ is 0, the state is not degenerate, and Ay can only multiply it by a constant.

Since A2y = 1, such states are either symmetric or anti-symmetric to re°ection through
a plane, and one distinguishes §+ and §¡ states.
If the molecule has two nuclei with identical charge (a homonuclear molecule),

the centre is also a symmetry point, and states have parity. States of even (g) and
uneven (u) parity are denoted by ¦g, ¢u, etc. A homonuclear diatomic molecule has
four non-degenerate sigma states, §+g , §

¡
g , §

+
u , and §

¡
u .

Finally, each electronic eigenstate has a total spin S, with eigenvalues of S2 of
S(S+1)¹h2. The value of 2S+1 is given as a left superscript (the multiplicity) on the
designation. Thus, since most molecular ground states (often labelled X) are § states
of zero total spin, the complete label for a ground state could be X1§+ or X1§+g .
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4.2 The hydrogen molecular ion

We may start our study of electronic wave functions with the simplest molecule of
all, H+2 , with two protons and one electron. To simplify writing, we will switch to
Hartree's dimensionless atomic units, in which the units of mass, charge, angular
momentum, and length are chosen to be me, e, ¹h, and a0 = 4¼"0¹h

2=mee
2, with the

result (you may check this) that the units for time, velocity, and energy become
mea

2
0=¹h, ¹h=mea0 = ®c, and ¹h2=mea

2
0 = e2=4¼"0a0 = 2E1, where E1 is the ground

state binding energy of H. In these units, the electronic wave equation becomesµ
¡1
2
r2
r ¡

1

rA
¡ 1

rB
+
1

R
¡Es

¶
©s = 0;

where rA and rB are the distances to the electron from nuclei A and B, r is the
distance to the electron from the centre of mass, and R is the internuclear separation.
Note that the energy operator could be with respect to r, rA, or rB.
We will solve this equation using the simple approximation of a linear combination

of atomic orbitals (LCAO). If the nuclei are far apart, the electron will be attached
to one (say A), with wave function

©(R; r) = Ã1s(rA) =
1p
¼
exp(¡rA):

To give the wave function the correct symmetry about the midpoint of R, construct
the functions

©g(R; r) = [Ã1s(rA) + Ã1s(rB)]=
p
2

and
©u(R; r) = [Ã1s(rA)¡ Ã1s(rB)]=

p
2:

These wave functions will only be accurate for large R, but may be used as trial wave
functions in a variational solution, in which the true ground state energy should be
less than

Eg;u =
Z
©?g;uH©g;udr=

Z
j©g;uj2dr:

The denominator of this expression is

D =
1

2

Z
[jÃ1s(rA)j2 + jÃ1s(rB)j2 § 2Ã1s(rA)Ã1s(rB)]dr:

This integral may be taken over r, rA, or rB, since all the integrals extend over all
space. Because of the normalization of Ã1s(r), we ¯nd

D = 1§ I(R)

where

I(R) =
Z
Ã1s(rA)Ã1s(rB)dr =

µ
1 +R+

1

3
R2
¶
e¡R

using the result for two-centre integrals proved by B & J (appendix 9).
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The numerator is

N = HAA +HAB =
Z
Ã1s(rA)HÃ1s(rA)drA §

Z
Ã1s(rA)HÃ1s(rB)drB:

Again we use the two-centre integrals, as well as the fact that the Ã1s's are solutions
of µ

¡1
2
r2 ¡ 1

r
¡E1s

¶
Ã1s(r) = 0;

where the kinetic energy operator may be with respect to r, rA, or rB, since all
measure the position of the electron. The ¯nal result is

Eg;u(R) = E1s +
1

R

(1 +R)e¡2R § (1¡ 2
3
R2)e¡R

1§ (1 +R+ 1
3
R2)e¡R

:

The variation of Eg(R), using the symmetric wave function, shows a minimum be-
low E1s of 1.77 eV at R0 = 1:32 ºA, and thus is a bonding molecular orbital. The
minimum energy and equilibrium separation are reasonable (though not very accu-
rate) estimates of the exact values of 2.79 eV at 1.06 ºA.The curve of Eu(R) has no
minimum; it is an anti-bonding state. The symmetric bonding state is held together
by an excess of charge between the two protons, while in the anti-bonding state the
electron spends most of its time away from the centre of the molecule.
This problem may be solved exactly (although numerically, not analytically)

through the use of confocal elliptic coordinates, which are also used in the evalu-
ation of the two-centre integrals.

4.3 Molecular hydrogen

4.3.1 Spin considerations

With two electrons, we must consider the e®ects of the exclusion principle, which
states that eigenstates must be antisymmetric to exchange of two identical fermions.
The eigenstates of the two-electron cloud are products of spatial wave functions and
spin functions. How does the spin a®ect the situation?
The total spin operator is

S = S1 + S2;

where S1 operates only on electron 1, and S2 only on electron 2. Individual electrons
have spin eigenfunctions ®(1), ®(2), etc, as previously discussed. We need to ¯nd
spin eigenstates of both Sz and of S

2. Try the simple combinations

Â1(1; 2) = ®(1)®(2)

Â2(1; 2) = ®(1)¯(2)

Â3(1; 2) = ¯(1)®(2)

Â4(1; 2) = ¯(1)¯(2):

It is easily shown by operating on these functions that each is an eigenstate of Sz =
Sz;1 + Sz;2 with eigenvalues respectively 1, 0, 0, and -1. However, when we operate
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with S2 = S21 + S
2
2 + 2S1 ¢ S2, using the relations (proved in B & J, appendix 4, with

the aid of raising and lowering operators)

Sx® =
¹h
2
¯; Sx¯ =

¹h
2
®

Sy® =
i¹h
2
¯; Sy¯ = ¡ i¹h

2
®

Sz® =
¹h
2
®; Sz¯ =

¹h
2
¯;

we ¯nd that neither Â2 nor Â3 is an eigenstate of S
2. But it is easy to make linear

combinations of these two functions that are eigenstates, and that also have symmetry
under particle exchange:

Â+(1; 2) =
1p
2
[Â2(1; 2) + Â3(1; 2)]

and

Â¡(1; 2) =
1p
2
[Â2(1; 2)¡ Â3(1; 2)]:

It is easily shown that Â+ has eigenvalues of S
2 and Sz of S = 1 and MS = 0,

while Â¡ has S = 0 and MS = 0. We now have four normalized and orthogonal spin
eigenstates that we will denote by ÂS;MS

for clarity. Â0;0 is antisymmetric to particle
exchange, while the other three states are symmetric. We call the one S = 0 state a
spin singlet, while the other three states form a spin triplet.

4.3.2 Molecular orbital treatment of H2

In solving (approximately) the problem of the electron cloud structure for the two-
electron system H2, we have the obvious choice of using as a basis set the molecular
orbitals found for H+2 , or the atomic orbitals of the individual H atoms. Either
provides a useful basis for solution. We will start with the molecular orbitals.
Recall that we have two molecular orbitals ©g and ©u (which are even and odd

under re°ection through the midpoint of R). The product ©g(1)©g(2) is symmet-
ric under exchange of electrons 1 and 2, as are the combinations ©u(1)©u(2) and
[©g(1)©u(2) + ©u(1)©g(2)]=

p
2. On the other hand, the function [©g(1)©u(2) ¡

©u(1)©g(2)]=
p
2 is antisymmetric under exchange of the electrons. Thus we may

form (only) four orthogonal eigenfunctions that are antisymmetric under exchange:

©A(1; 2) = ©g(1)©g(2)Â0;0(1; 2)

©B(1; 2) = ©u(1)©u(2)Â0;0(1; 2)

©C(1; 2) = (1=
p
2)[©g(1)©g(2) + ©u(1)©u(2)]Â0;0(1; 2)

©D(1; 2) = (1=
p
2)[©g(1)©g(2)¡ ©u(1)©u(2)]Â1;MS

(1; 2);

where in ©D MS can take the values 0 and §1. It is easy to see that ©A and ©B are
1§+g states, while ©C is a

1§+u state and the three ©D states are
3§+u states.
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To get a bonding state, we need the two electrons to prefer to be between the two
protons. If they both occupy the bonding orbitals of the H+2 system, and have opposite
spins (so that the exclusion principle will not require them to occupy di®erent spatial
states), we guess that we should get maximum bonding. Thus we guess that ©A(1; 2)
may a reasonable approximation to the ground state of H2.
We now need to solve the equation

(H ¡Es)©s = [(H0(1) +H0(2) +
µ
1

r12
+
1

R

¶
]©s = 0

where H0 is given by

H0(i) = ¡1
2
r2
i ¡

1

rAi
¡ 1

rBi
:

Using the fact that the individual molecular orbitals are solutions of

H0(i)©g;u =
µ
Eg;u ¡ 1

R

¶
©g;u;

one ¯nds that the Rayleigh-Ritz variational functional is given by

EA = 2Eg(R)¡ 1

R
+
Z
dr1dr2

j©g(1)©g(2)j2
r12

:

If one uses the approximate LCAO molecular orbitals found above, the binding
energy De is calculated to be 2.68 eV (compared to an accurate value of 4.75 eV),
with a computed equilibrium R0 of 0.8 ºA, compared to an accurate value of 0.74 ºA.
The trial wavefunction that we have used may be written as the sum of two terms,

©A = ©
cov
A +©ionA

where

©covA =
1

2
[Ã1s(rA1)Ã1s(rB2) + Ã1s(rA2)Ã1s(rB1)]Â0;0(1; 2)

and

©ionA =
1

2
[Ã1s(rA1)Ã1s(rA2) + Ã1s(rB1)Ã1s(rB2)]Â0;0(1; 2):

©covA represents the situation in which one electron is associated with each nucleus (a
sum of terms in which either electron 1 is measured from nucleus A and electron 2 is
measured from nucleus B, or vice versa), while ©ionA represents a situation in which
both electrons are associated either with nucleus A or with nucleus B. These are two
basic limiting forms of the electronic wavefunctions which represent covalent bonding
(bonding by electron sharing) and ionic bonding (exchange of electrons and bonding
by ionic attraction). In the case of H2, the exact wavefunction has predominantly
a covalent character for all values of R, but particularly so for large R, where the
probability that both electrons will be associated with one nucleus is very small, and
for small R where the two nuclei are close and so the two electron clouds must largely
overlap. Other molecules (e.g. NaCl) have wavefunctions that have a much more
nearly ionic character.
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