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1 Several-particle systems

1.1 Introduction

Consider a system of N spinless particles of masses mi, positions ri and momenta pi.
The Schroedinger equation for this system is an obvious generalization of the one for
a single particle:

ih̄
∂

∂t
Ψ =

"
NX
i=1

Ã
− h̄2

2mi
∇2ri

!
+ V (r1, ..., rN, t)

#
Ψ,

where ∇ri acts only on the coordinates of the ith particle, and the wave function Ψ
is a function of coordinates of all the particles and of time.
All the components of position and momentum of particle i commute with with

the coordinates of particle j.

1.2 Two-body systems

A system of particular interest is one composed of two bodies of masses m1 and m2

which interact via a potential V (r1 − r2) that depends only on the relative positions
of the two particles. For this system, the Schroedinger equation is

ih̄
∂

∂t
Ψ(r1, r2, t) =

"
− h̄2

2m1
∇2r1 −

h̄2

2m2
∇2r2 + V (r1 − r2)

#
Ψ(r1, r2, t).

Define the relative separation vector

r = r1 − r2
and the position of the centre of mass

R =
m1r1 +m2r2
m1 +m2

.
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Changing variables, the Schroedinger equation becomes

ih̄
∂

∂t
Ψ(R, r, t) =

"
− h̄

2

2M
∇2R −

h̄2

2µ
∇2r + V (r)

#
Ψ(R, r, t),

with total mass M = m1 +m2 and reduced mass

µ =
m1m2

m1 +m2
.

Following the usual method for solving partial differential equations, assume that
the solution is separable. Start by separating off the time:

Ψ(R, r, t) = Π(R, r)Θ(t).

Upon substitution, we find

ih̄

Θ(t)

d

dt
Θ(t) =

1

Π(R, r)

"
− h̄

2

2M
∇2R −

h̄2

2µ
∇2r + V (r)

#
Π(R, r).

Since the right hand side is a function only of R and r, while the left is a function
only of t, both must be equal to a constant Etot, the total energy of the system. The
time equation clearly has the solution

Θ(t) = exp(−iEtott/h̄),
where we are leaving the normalization to the space functions.
Next we separate the two space coordinates, assuming

Π(R, r) = Φ(R)ψ(r).

We find

Etot = − 1

Φ(R)

h̄2

2M
∇2RΦ(R) +

1

ψ(r)

"
− h̄

2

2µ
∇2r + V (r)

#
ψ(r).

The two terms on the right depend on different variables, and hence must each be
separately constant. Call their constant values ECM and E. We see at once that
Etot = ECM + E, as expected, and we get two more equations:

− h̄
2

2M
∇2RΦ(R) = ECMΦ(R),

and "
− h̄

2

2µ
∇2r + V (r)

#
ψ(r) = Eψ(r).

The centre of mass equation describes the motion of a free particle of mass M and
energy ECM. The equation for relative motion is the same as the Schroedinger equa-
tion of a single particle of mass µ moving in the potential V (r). Thus as long as we
work in the centre of mass coordinates of the two-body system, we do not need to be
concerned about its centre of mass motion.
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1.3 Indistinguishable particles

We have already seen that the parity operator commutes with a spherically symmetric
Hamiltonian, so eigenstates of such a system are also parity eigenstates. With several
particles, it is interesting to consider another exchange operator: the interchange
operator Pij which exchanges the space and spin coordinates of particle i with that
of particle j. If these particles are identical this operator must commute with the
Hamiltonian.
Since two successive interchanges restore the original situation, the eigenvalues

² of the interchange operator must be ±1. A wave function with ² = +1 is called
symmetric under interchange; the opposite is antisymmetric.
If we perform a series of interchanges, we do not usually come back to the original

configuration. Further, a series of interchanges do not in general mutually commute,
since doing permutations in different orders leads to different rearrangements of par-
ticles. Hence an arbitrary series of interchanges does not commute with the system
Hamiltonian, and is not a constant of motion.
However, two particular kinds of states have simple behaviour under all series

of permutations. If the state is symmetric under all interchanges, or antisymmetric
under all interchanges, it does commute with H and is a constant of the motion.
It appears that all systems of identical particles are one of these types. Particles

totally symmetric under interchange are bosons and have integral spin (e.g. photons);
particles with totally antisymmetric wave functions are fermions and have half-
integral spin (e.g. electrons).
The requirement that the wave function of a system of fermions be totally an-

tisymmetric under interchange is a general form of the Pauli exclusion principle. It
turns out to have important, observable consequences for systems such as H2, for
which the wave function must be antisymmetric under exchange of the two electrons,
and under exchange of the two protons.

2 Approximation methods

There are many interesting cases in nature in which a system that we can model
(at least approximately) can be slightly altered (for example by imposing a “weak”
external electric or magnetic field). It is often possible to describe the effect of this ex-
tra influence by considering how the basic eigenstates and eigenvalues are perturbed.
This topic covers a large range of important and very useful methods of understanding
quantum systems.

2.1 Time-independent perturbation theory

Consider the discrete states of a Hamiltonian

H = H0 + λH 0,
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where we know the eigenstates ψk of H0, and λH 0 is a small perturbation. λ is a
strength parameter that we will use to distinguish between various orders of approx-
imation. We are looking for approximate solutions of

HΨk = EkΨk.
Suppose the unperturbed energy levels are not degenerate. (The degenerate case

is dealt with in B & J.) We expand the wave functions and energies we want, Ψk and
Ek, in a series of powers of the perturbation parameter λ:

Ψk =
∞X
n=0

λnψ
(n)
k

and

Ek =
∞X
n=0

λnE
(n)
k .

The functions ψ
(n)
k and values E

(n)
k are initially unknown; we must determine them.

Substitute into the full Schroedinger equation and equate the terms with equal
powers of λ on the two sides of the equation. For the term λ0, we find

H0ψ
(0)
k = E

(0)
k ψ

(0)
k ,

so the leading term in our expansion is just the eigenstates and eigenvalues of the
unperturbed problem, as expected. The next term gives

H0ψ
(1)
k +H 0ψk = Ekψ

(1)
k + E

(1)
k ψk

and so on. To use this equation, left multiply the equation by ψ?k and integrate. We
find

hψk|H0 − Ek|ψ(1)k i+ hψk|H 0 − E(1)k |ψki = 0.
When we use the Hermitian nature of H0 to make it operate on the left wave function,
the left term vanishes, so we get the simple result

E
(1)
k = hψk|H 0|ψki ≡ H 0

kk.

Similarly,
E
(2)
k = hψk|H 0 − E(1)k |ψ(1)k i.

This is a typical result of perturbation theory: the answers contain matrix elements
such as H 0

kk.

But how to get ψ
(1)
k ? Expand it in the complete set of solutions of the unperturbed

problem, which we know:
ψ
(1)
k =

X
m

a(1)m ψm.

Putting this into the first-order equation,

(H0 − Ek)
X
m

a(1)m ψm + (H
0 − E(1)k )ψk = 0.
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Left multiply by ψ?l and integrate over space:

a
(1)
l (El − Ek) + hψl|H 0|ψki− E(1)k δkl = 0.

For l = k we get back the expression for E
(1)
k . For other values of l we have

a
(1)
l =

H 0
lk

Ek − El .

Since a
(1)
k is undetermined, we set it to 0. With this result for the expansion coeffi-

cients, we can determine the first-order correction ψ
(1)
k to the unperturbed eigenstates.

We can also evaluate the second-order energy correction E
(2)
k :

E
(2)
k =

X
m 6=k

|H 0
km|2

Ek − Em .

If the unperturbed levels are degenerate, we get more bookkeeping complexity,
but similar results.

2.2 Time-dependent perturbation theory

Next consider the case in which the total Hamiltonian is mainly a system in a steady
state, but is slightly perturbed by some time-dependent effect:

H = H0 + λH 0(t).

Now suppose we know the Ek’s and ψk’s of the stationary problem, so that H0ψk =
Ekψk. The solution to the time-dependent Schroedinger equation for the unperturbed
system

ih̄
∂Ψ0
∂t

= H0Ψ0

is
Ψ0 =

X
k

c
(0)
k ψke

−iEkt/h̄.

The c
(0)
k ’s are constants. Since the ψk’s form a complete set, we can expand the

general solution of the time-dependent problem (with H in place of H0) as

Ψ =
X
k

ck(t)ψke
−iEkt/h̄.

Here ck(t) is probability amplitude of finding the state in state k at time t; c
(0)
k is the

initial value of ck(t).
To find the ck(t), insert the expansion into the time-dependent Schroedinger equa-

tion, and use the fact that H0ψk = Ekψk:

ih̄
P
k ċk(t)ψke

−iEkt/h̄ +Ek
P
k ck(t)ψke

−iEkt/h̄ =P
k ck(t)H0ψke

−iEkt/h̄ +
P
k ck(t)λH

0ψke−iEkt/h̄
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so that
ih̄
X
k

ċk(t)ψke
−iEkt/h̄ =

X
k

ck(t)λH
0ψke−iEkt/h̄.

Multiplying from the left by a particular ψb and integrating, we find

ċb(t) = (ih̄)
−1X

k

λH 0
bk(t)ck(t)e

−iωbkt

where ωbk = (Eb − Ek)/h̄ and H 0
bk = hψb|H 0(t)|ψki. So far, this is equivalent to the

original formulation. Because the perturbation is weak, expand the ck’s in a series in
λ as

ck(t) = c
(0)
k (t) + λc

(1)
k (t) + λ2c

(2)
k (t) + ...

Substituting into the equation for ċb and (as usual) equating coefficients of equal
powers of λ, we obtain

ċ
(0)
b = 0

ċ
(1)
b = (ih̄)−1

X
k

H 0
bk(t)e

iωbktc
(0)
k

and so on. Each successive term in the series expansion for cb (which may be any of the
ck’s) can be integrated from the already determined variation of the next lower order
term. The first equation is consistent with our assumption that with no perturbation
(λ = 0), the ck’s are constant. Let’s assume now that only one of the ck’s is initially
non-zero (for all t < t0), so the system is in the well-defined state c(0)a = 1, and that
the perturbation is first turned on at t = t0. We then may compute how the other
ck’s increase from zero as a result of transitions induced by the perturbation. For a
particular state b,

c
(1)
b (t) = (ih̄)

−1
Z t

t0
H 0
ba(t

0)eiωbat
0
dt0,

and the probability of finding the system in state b at t is

Pba(t) = |c(1)b (t)|2.

We can obtain a widely useful result from this reasoning. Suppose that the per-
turbation H 0 is constant except for being turned on at t0 = 0. At time t the expansion
coefficient c

(1)
b (t) is given by

c
(1)
b (t) = −

H 0
ba

h̄ωba
(eiωbat − 1),

and the probability that a transition from a to b has occurred at t is

Pba(t) = |c(1)b (t)|2 =
2

h̄2
|H 0

ba|2F (t,ωba)

where F (t,ω) = (1− cosωt)/ω2. F (t,ω) is a function that is sharply peaked around
ω = 0, where it has the value t2/2, and is nearly zero at values of ω farther from 0
than ±2π/t.
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Now suppose that the transition from the initial isolated state a is to a group of
neighboring states (for example in a free particle continuum) around the final energy
Eb. Take the density of states — the number of states b

0 per unit energy around Eb that
are accessible from a — to be ρb0(Eb0). Then the first-order probability of transition
from a to one of the states around b is

Pba(t) =
2

h̄2

Z Eb+η

Eb−η
|Hb0a|2F (t,ωb0a)ρb0(Eb0)dEb0 ,

where η is large enough to cover essentially all the region where the sharply peaked
function F (t,ω) is non-zero. Assuming that H 0

b0a and ρb0a do not vary much within
the integration range, we may remove them from inside the integral and extend the
limits to ±∞. The result is

Pba(t) = 2
h̄2
|Hba|2ρb(Eb) R∞−∞ F (t,ωb0a)dEb0

= 2
h̄2
|Hba|2ρb(Eb)(h̄πt)

= 2π
h̄
|Hba|2ρb(Eb)t.

Defining the probability of transition per unit time Wba ≡ dPba/dt, we finally obtain
the widely applicable result known as Fermi’s Golden Rule,

Wba =
2π

h̄
|Hba|2ρb(Eb),

which simply states that the probability per unit time of the transition from a to
one of the states b is proportional to a transition matrix element squared times the
density of final states. Although we have proved this for a very specific case, we will
find that it is also true in certain cases in which radiation interacts with atoms, and
in some nuclear processes.

3 Variational estimation of bound state energies

As a final topic, we briefly look at a non-perturbation technique for finding (often
usefully accurate) upper bounds to bound state energy levels. In this technique we
use parameterized approximate wave functions, and vary the parameters to obtain
the best estimate possible with our chosen functions; the technique is therefore called
the variational method.
Consider again a system with a Hamiltonian H, eigenfunctions ψk, and (some)

discrete energy eigenvalues Ek. We assume that we do not know the solution to this
problem even though a solution exists, but it helps a lot if we have some idea of the
general form of the wave functions of low-lying states.
Pick a trial function φ that has one or several free parameters and that is con-

venient to manipulate; if possible it should have a form something like the expected
wave function of the ground state. Form the functional

E[φ] =
hφ|H|φi
hφ|φi .
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This functional provides an upper bound the the exact ground state energy E0. This
is easily seen by expanding the trial function in the complete orthonormal set of
eigenstates of the system (we don’t know these, so our expansion at this point is
simply formal):

φ =
X
n

anψn.

Substituting into the functional E[φ], carrying out the required integration over space
coordinates, and using the fact that the ψn are eigenstates of H, we find

E[φ] =

P
n |an|2EnP
n |an|2

.

Now subtract the ground state energy E0 from both sides to get

E[φ]− E0 =
P
n |an|2(En − E0)P

n |an|2
.

Because En ≥ E0, the right-hand side is ≥ 0, and we see that E[φ] is indeed an upper
bound for E0.
The Rayleigh-Ritz variational method consists simply of choosing a suitable pa-

rameterized trial function and minimizing E[φ] with respect to these parameters in
order to get the best possible estimate of the ground state energy. If the trial function
is chosen with care, quite respectable estimates of ground state energy are possible.
This method may also be used to obtain an estimate of the energy of an excited

state provided one can find a trial function that is orthogonal to all states below
the one of interest. To see this, arrange the energy eigenstates in order of increasing
energy. If the trial function is orthogonal to the lowest i states of the system, we have
an = hφ|ψni = 0 for n = 1, 2, ...i and the expansion becomes

E[φ]− Ei+1 =
P
n=i+1 |an|2(En − Ei+1)P

n=i+1 |an|2
,

and again we see that the right-hand side is non-negative.
This result is most useful, at least for a few low-lying states, if the eigenstates

of the problem are known to have symmetry properties such as parity or angular
momentum. For example, if the state of interest has a different angular momentum
than all of the states below it, the trial function may be chosen to have this angular
momentum and is automatically orthogonal to the lower states. Similarly, the energy
of a first excited state of opposite parity to the ground state may be estimated by
using a trial function of opposite parity to that of the ground state.
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