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1 Simple Fermi theory of beta decay

² Beta decay is one of the most easily found kinds of radioactivity. As we have
seen, this result of the weak interaction leads to conversion of a neutron into
a proton or vice versa, with the necessary charge change being made possible
by the emission of a positive or negative beta particle (positron or electron).
To ensure conservation of lepton number, each such event is accompanied by
emission of an electron neutrino. Alternatively, an orbital electron may be
absorbed (electron capture or K-capture), changing a proton into a neutron
(this process competes with ¯+ emission), with emission of an electron neutrino.

² The spectra of electrons or positrons emitted in beta decay is a continuum
of energies, up to a maximum value, with most emitted betas having inter-
mediate energies. The emitted, unobserved, neutrinos also have a continuous
energy distribution. In K-capture, there is no electron emitted; the neutrino is
mono-energetic. (Mono-energetic electrons also emerge from de-excitation of an
excited nucleus by internal conversion [see below]; this process leads to electron
emission but is quite a di®erent physical mechanism than beta decay.)

² We can predict the general form of the energy spectrum of the (observable)
beta particle, but not the absolute decay rate, from a simple theory proposed
by Fermi. The form of the spectrum is found simply by considering the density
of ¯nal states!

² We have seen, using perturbation theory, that the probability per unit time of
a transition into a group of closely spaced states is given by

W¯ =
2¼

¹h
jH¯j2nf(Ef);

where nf(Ef) is the density of ¯nal states and H¯ is the matrix element of the
Hamiltonian between states i and f (Lecture 2).

² In beta decay of an even-odd nucleus, the initial state is simply the wave function
of the single odd nucleon (let's say it is a proton), ªi = Ãp(rp). The ¯nal state
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is the wave function of the new neutron, the emitted positron and the neutrino:
ªf = Ãn(rn)Ãe(re)Ãº(rº). The interaction Hamiltonian is uncertain, but very
short range, and Fermi tried the simplest operator he could think of, namely a
constant that we will call Gw. Thus the matrix element is only non-zero to the
extent that the initial and ¯nal wave functions overlap:

H¯ ¼ Gw
Z
Ã¤n(r)Ã

¤
e (r)Ã

¤
º(r)Ãp(r)dr

3:

² For the lepton wave functions we take plane waves (although this is not accurate
for the beta particle, which is a®ected by the Coulomb interaction with the
nuclear protons). These must be normalized, so we again introduce an arti¯cial
(large) volume V :

Ã¤º(rº) =
1

V 1=2
eikº ¢rº

and

Ã¤e (re) =
1

V 1=2
eike¢re

² Now for lepton energies of a few MeV or less, the wavelengths of the lepton
wave function are of order 1 MeV/¹hc » 10¡2 fm¡1. Thus the exponent of each
of the exponentials is small over the extent of the nucleus, and we may replace
the two lepton wave functions by V ¡1=2. Then our trial matrix element is just

H¯ ¼ Gw
V

Z
Ã¤n(r)Ãp(r)d

3r:

In general we do not know what the value of the integral is. Let us simply assume
that it does not depend on how the released energy is partitioned between the
outgoing beta particle and the neutrino, so that for a given decay we may treat
it as a constant which we will call MF.

² We have so far ignored the (signi¯cant) e®ect of the Coulomb interaction be-
tween the outgoing beta particle and the nucleus. The e®ect of this interaction
for non-relativistic particles is to replace the beta particle plane wave at the ori-
gin by the wavefunction of the beta particle in the electric ¯eld of the daughter
nucleus of charge Zd. This is equivalent to multiplying our expression for W¯

by F (Z;E¯) = jÃ¯(Zd; 0)=Ã¯(0; 0)j2. It is found that

F (Z;E¯) ¼ 2¼´

1¡ exp(¡2¼´)
where ´ = §(Ze2)=(4¼"0¹hv¯) and the sign of ´ is opposite to that of the charge
on the beta particle. For both electrons and positrons F (Z;E¯) > 0; for large
beta velocity this factor approaches 1 (as it should) but for small v¯ the function
tends to a large value for electrons (for which the outgoing wavefunction is
concentrated around the nucleus) and to a small value for positrons (for which
the outgoing wavefunction is made small near the nucleus by the Coulomb
repulsion).
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² So ¯nally the decay rate that we need is

W¯ ¼ 2¼

¹h

G2w
V 2
jMFj2F (Z;E¯)nf(Ef):

² What density of ¯nal states is needed? After the decay, we may suppose that
the ¯nal nuclear state is stable, so it has a well-de¯ned energy, while the initial
unstable state has ¯nite width due to the uncertainty principle ¢Ei¢t ¸ ¹h.
Suppose that in the decay we can measure precisely the state of the outgoing
electron (its momentum vector, not its position, of course). Now because of
the uncertainty in initial energy, the outgoing neutrino with have a slightly
uncertain energy, and may end up in any one of a number of closely adjacent
states. Thus for the probability of decay to a speci¯c ¯nal electron state, we
need the density of ¯nal neutrino states.

² Now recalling that the neutrino is relativistic (and may have non-zero mass), so
that its momentum and energy are related by E2º = (mºc

2)2+(pºc)
2, we may use

our earlier result that the density of plane wave states (neglecting spin) in V is
nf = [V=(2¼)

3]4¼k2ºdkº , where kº = (E
2
º¡m2

ºc
4)1=2=¹hc and EºdEº = ¹h

2c2kºdkº .
Thus the relativistic density of neutrino states is

nº(Eº)dEº =
V

(2¼)3
4¼

(¹hc)3
(E2º ¡m2

ºc
4)1=2EºdEº :

² However, because the outgoing neutrino is not observable, we need to express
this in terms of the observable beta particle energy, E¯ = E0 ¡ Eº , where E0
is the total energy available for the decay. Thus the probability of decay into a
single electron state of energy E¯ is

W¯ ¼ G2wjMFj2
¼V ¹h4c3

F (Z;E¯)(E0 ¡E¯)[(E0 ¡E¯)2 ¡ (mºc
2)2]1=2;

and the total probability of decay into any of the ¯nal beta particle states within
momentum interval dp¯ { using now the density of beta particle states { is

P (p¯)dp¯ ¼W¯n(p¯)dp¯

¼ G2wjMif j2
2¼3¹h7c3

F (Z;E¯)p
2
¯(E0 ¡ E¯)[(E0 ¡E¯)2 ¡ (mºc

2)2]1=2dp¯:

The distribution of electron energies (or momenta) is produced entirely by the
density of states factors.

² This theory of beta decay is usually tested, and the value of the total decay
energy determined accurately, by plotting the value of

q
P (p¯)=p2¯ against the

total or kinetic energy. Such a plot is called a Kurie plot; it has the virtue
that if mº is small, the measured points are proportional to E0 ¡ E¯ and the
graph crosses 0 where E0 = E¯. From such graphs it is found that the rest
mass-energy of the neutrino is no more than about 5 eV.
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² The total transition rate for a decay is found by integrating the expression
above over beta particle energy. The resulting mean lifetime of a beta-unstable
nucleus is

1

¿
¼ G2wkjMFj2m5

ec
4

2¼3¹h7
f(Zd; E0);

where

f(Zd; E0) =
µ
1

mec2

¶5 Z E0

mec2
F (Z;E¯)(E0 ¡E¯)2(E2¯ ¡m2

ec
4)1=2E¯dE¯;

neglecting the neutrino mass. The function f(Zd; E0) is dimensionless and has
been extensively tabulated. Once the value of the constant Gw has been de-
termined (from an experiment in which the matrix element can be evaluated
approximately), other experiments determine experimentally the value of the
unknown matrix elements of the decay in terms of the quantity f(Zd; E0)t1=2.
This ft-value is the quantity usually quoted for an experimentally studied beta
decay, rather than the value of the matrix element.

1.1 Electron capture

² A process that competes with positron beta decay is electron capture, in which
the same conversion of a proton into a neutron is accomplished by the capture
of an orbital electron with emission of a neutrino. We may calculate the rate of
this process using very similar reasoning to that discussed above.

² Again we use Fermi's golden rule. Now the initial state is a nuclear proton
wave function and an orbital electron wave function, while the ¯nal state is
an nuclear neutron and a free neutrino of (almost) de¯nite energy (the initial
state, of ¯nite lifetime, has a slightly uncertain energy). The initial electron
state (assuming the electron to be a K electron in the innermost shell) is thus

Ãe(r) =
1p
¼

Ã
Zmee

2

4¼"0¹h
2

!3=2
exp

Ã
¡Zmee

2r

4¼"0¹h
2

!
:

Thus the total rate for this process is

1

¿K
¼ 22¼

¹h
jH¯j2nº(Eº);

where the initial 2 arises because there are two K-shell electrons, the matrix
element is given by

H¯ = Gw

Z
Ã¤n(r)Ã

¤
º(r)Ãp(r)Ãe(r)d

3r;

and the density of states is only that of the neutrino,

nº(Eº) =
V

(2¼)3
4¼

¹h3c3
E2º :
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Because the electron wave function is normalized to its con¯ned volume around
the nucleus, V only appears to the ¯rst power now. Again we simply need
to evaluate the electron wave function at the nucleus (i.e. at r = 0), and the
only part of the matrix element that we cannot evaluate is the nuclear overlap
integral, which is the same integral MF that appears in the normal beta decay
theory.

² Putting the pieces together, the transition rate for electron capture (the inverse
of the lifetime) is

1

¿K
¼ 2G2wjMFj2E20c

¼2¹h4c3

Ã
Zmee

2

4¼"0¹h
2

!3
;

where E20c is the energy available in the decay (given to the escaping neutrino).
Note that this result is two times larger than in C & G because they have
calculated the rate for a single K electron.

² The ratio of the decay rate by this process to normal positron decay is easily
calculated because the same nuclear matrix element appears in both results.
We get

1=¿K
1=¿

= 4¼
µ
E0c
mec2

¶2 (®Z)3

f(Zd; E0c)
;

where ® = (e2=(4¼"0¹hc) ¼ 1=137 is the (dimensionless) ¯ne structure constant
(Lecture 3) and we neglect the mass of the neutrino. We can see that for small
available energies this ratio is made large by the smallness of f(Zd; E0c) (and
is in¯nite if positron decay is not permitted energetically); it is also relatively
large for high Z because of the Z3 factor.

² Experiments on electron capture are not as straight-forward as on normal beta
decay. The outgoing neutrino is unobservable. Instead, what may be detected
is an x-ray from transitions in the electron cloud as the missing K electron is
replaced from a higher level, and/or an Auger electron ejected from the excited
electron cloud, carrying o® the energy released as an L-shell electron drops into
the K-shell.

2 Gamma decays

² You have already gone through the (partial) derivation of the spontaneous emis-
sion rate of photons from an excited system (Secs 4.2 and 4.3 in B & J). The
¯nal result of this exercise was to derive the lowest order emission probability
per second, or inverse lifetime, in the dipole approximation,

W s
ab =

4®

3c2
!3bajrbaj2;

where !ba is the angular frequency corresponding to the energy di®erence be-
tween states a and b, and rba = hÃajrjÃbi is the matrix element of the position
vector between the wavefunctions of states a and b.
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² The derivation of this result (repeated in somewhat di®erent form in C & G)
is as valid for nuclear photon emission as for emission from atoms: B & J
Eq. [4.71] is identical to C & G (12.12). The same approximations are valid,
particularly the expansion of the outgoing wave state exp(ik ¢ r) in powers of
k ¢ r. Clearly since nuclei are much smaller than atoms, the spatial extent of
the wavefunction will be much smaller, resulting in a much smaller value for
jrbaj, but this is compensated for by much larger values of !ba than are found for
atoms. In fact the order of magnitude of the emission rate for allowed nuclear
transitions,

1

¿E1
» 0:4£ 1015

µ
E°

1 MeV

¶3 Ã jr¯j
1fm

!2
s¡1

is quite a lot larger than the characteristic rate for allowed atomic transitions

1

¿E1
» 0:4£ 107

µ
E°
1 eV

¶3 Ã jr¯j
1 ºA

!2
s¡1:

² Since atoms { in most interesting contexts { collide with one another and so
can de-excite collisionally if radiation is forbidden (i.e. highly suppressed), they
rarely emit much radiation which is not allowed in the lowest dipole approxi-
mation. In contrast, nuclei often ¯nd themselves with no means of de-exciting
from an excited state other than photon radiation. If an excited state di®ers
from all lower states by several units of angular momentum, radiation will be
possible only by a rather high multipole, and since each higher multipole of elec-
tric radiation is slower at nuclear energies by a factor of order 104 than the next
lower multipole, lifetimes of radiative decay can sometimes be quite long even
by human standards. In this case we speak not of metastable but of isomeric
states; such states may be stable enough to make it into the handbooks....

² Another (electromagnetic) process which competes with radiation, especially
if it is rather forbidden, is internal conversion. In this process, the nucleus
transfers its excitation energy directly to an atomic electron (usually a K-shell
electron) which is ejected, carrying o® the excitation energy. The matrix ele-
ments of the two processes are similar, but the increasing concentration of the
K-shell electrons near the nucleus as Z increases means that internal conver-
sion competes increasingly well with photon emission as Z increases. Note that
there is no photon involved here; the energy is transferred directly to the atomic
electron.
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