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Chapter 8. Motion in a Noninertial Reference Frame  
   
(Most of the material presented in this chapter is taken from Thornton and Marion, Chap. 
10.) 

We have so far dealt only with problems situated in inertial reference frame, or if not, 
problems that could be solved with enough accuracy by ignoring the noninertial nature of 
the coordinate systems. There are, however, many problems for which it is necessary, or 
beneficial, to treat the motion of the system at hand in a noninertial reference frame. In 
this chapter, we will develop the mathematical apparatus that will allow us to deal with 
such problems, and prepare the way for the study of the motion of rigid bodies that we 
will tackle in the next chapter. 

8.1 Rotating Coordinate Systems 
Let’s consider two coordinate systems: one that is inertial and for which the axes are 
fixed, and another whose axes are rotating with respect to the inertial system. We 
represent the coordinates of the fixed system by !x

i
 and the coordinates of the rotating 

system by x
i
. If we choose some point in space P  (see Figure 8-1) we have 

 
 !r = R + r,  (8.1) 
 
where R  locates the origin of the rotating system in the fixed system. We assume that P  
is at rest in the inertial so that !r  is constant.  
If during an infinitesimal amount of time dt  the rotating system undergoes an 
infinitesimal rotation d!  about some axis, then the vector r  will vary not only as 
measured by an observer co-moving with the rotating system, but also when measured in 
the inertial frame. 

 

Figure 8-1 – The !x
i
’s are coordinates in the fixed system, and x

i
 are coordinates in the 

rotating system. The vector R  locates the origin of the rotating system in the fixed 
system.  
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This problem is the same as was treated in Chapter 4 when considering the conservation 
of angular momentum using Noether’s Theorem (see Figure 4.7 and equation (4.107) on 
page 79), and we can write 
 
 dr( )

fixed
= d! " r,  (8.2) 

 
where the designation “fixed” is included to indicate that dr  is measured in the fixed or 
inertial coordinate system. We can obtain the time rate of change of r  in the inertial 
system by dividing both sides of equation (8.2) by dt  
 

 dr

dt

!
"#

$
%&
fixed

= ' ( r,  (8.3) 

 
with 
 

 ! =
d"

dt
.  (8.4) 

 
If we allow the point P  to have some velocity dr dt( )

rotating
 with respect to the rotating 

system, equation (8.3) must be correspondingly modified to account for this motion. 
Then, we have 
 

 dr

dt

!
"#

$
%&
fixed

=
dr

dt

!
"#

$
%&
rotating

+' ( r.  (8.5) 

 
Example 

We have a vector r = x
1
e
1
+ x

2
e
2
+ x

3
e
3
 in a rotating system, which share a common 

origin with an inertial system. Find  !!r  in the fixed system by direct differentiation if the 
angular velocity of the rotating system is !  in the fixed system. 
 
Solution. 
We have 
 

 
 

!!r =
dr

dt

"
#$

%
&'
fixed

=
d

dt
x
i
e
i( ) = !xei + xi !ei ,  (8.6) 

 
where a summation over a repeated index is implied. The first term on the right hand side 
of equation (8.6) is simply the velocity as measured in the rotating system (i.e., we have 
the components 

 
!x
i
 along the corresponding axes e

i
, which form the basis vectors of the 

rotating system). We therefore rewrite equation (8.6) as 
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dr

dt

!
"#

$
%&
fixed

=
dr

dt

!
"#

$
%&
rotating

+ x
i
!e
i
.  (8.7) 

 
We need to evaluate 

 
!e
i
 for i = 1, 2,  and 3 . To do so, consider three infinitesimal rotations 

d!
1
, d!

2
,  and d!

3
 along e

1
, e

2
,  and e

3
, respectively. If we first calculate the effect of the 

first rotation about e
1
 on the other two basis vectors (using Figure 8-2) we have 

 

 

 

de
2
= cos d!

1( )e2 + sin d!
1( )e3"# $% & e2

! e
2
+ d!

1
e
3[ ]& e2

! d!
1
e
3
,

 (8.8) 

 
since d!

1
 is infinitesimal. Similarly, if we calculate the effect of each infinitesimal 

rotations on every basis vectors we find, after a division by dt , that  
 

 

de
1

dt
=!

3
e
2
"!

2
e
3

de
2

dt
= "!

3
e
1
+!

1
e
3

de
3

dt
=!

2
e
1
"!

1
e
2
,

 (8.9) 

 
with !

i
= d"

i
dt . Alternatively, we can combine equations (8.9) into one vector equation 

as 
 
 

 
!e
i
= ! " e

i
,  (8.10) 

 
with ! = !

i
e
i
. Inserting equation (8.10) into equation (8.7), we get  

 

Figure 8-2 – With this definition for the set of axes, and with !
i
= d"

i
dt , for 

i = 1, 2,  and 3 , we can determine the effect of the rotations on the different basis vectors. 



149 

 

 

dr

dt

!
"#

$
%&
fixed

=
dr

dt

!
"#

$
%&
rotating

+ ' ( x
i
e
i( )

=
dr

dt

!
"#

$
%&
rotating

+ ' ( r( ),

 (8.11) 

 
which is the same result as equation (8.5). 

8.1.1 Generalization to arbitrary vectors 
Although we used the position vector r  for the derivation of equation (8.11) (or (8.5)), 
this expression applies equally well to an arbitrary vector Q , that is 
 

 
dQ

dt

!
"#

$
%&
fixed

=
dQ

dt

!
"#

$
%&
rotating

+' (Q  (8.12) 

 
For example, we can verify that the angular acceleration  !!  is the same in both systems 
of reference 
 

 

d!
dt

"
#$

%
&'
fixed

=
d!
dt

"
#$

%
&'
rotating

+! ( !

=
d!
dt

"
#$

%
&'
rotating

.

 (8.13) 

 
We can also use equation (8.12) to find the velocity of point P  (in Figure 8-1) as 
measured in the fixed system 
 

 

d !r
dt

"
#$

%
&'
fixed

=
dR

dt

"
#$

%
&'
fixed

+
dr

dt

"
#$

%
&'
fixed

=
dR

dt

"
#$

%
&'
fixed

+
dr

dt

"
#$

%
&'
rotating

+( ) r.
 (8.14) 

 
If we define the following quantities 
 

 

 

v f ! !rf !
d "r
dt

#
$%

&
'(
fixed

V ! !R f !
dR

dt

#
$%

&
'(
fixed

v r ! !rr !
dr

dt

#
$%

&
'(
rotating

,

 (8.15) 
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we can rewrite equation (8.14) as 
 
 v f = V + v r +! " r  (8.16) 

 
where 
 

 

v f =  the velocity relative to the fixed axes

V =  the linear velocity of the moving origin

v r =  the velocity to the rotating axes

! =  the angular velocity of the rotating axes

! " r =  the velocity due to the rotation of the moving axes.

 (8.17) 

8.2 The Centrifugal and Coriolis Forces 
We know that Newton’s Second Law (i.e., F = ma ) is valid only in an inertial frame of 
reference. In other words, the simple form F = ma  for the equation of motion applies 
when the acceleration is that which is measured in the fixed referenced system, i.e., 
a ! a f . Then, we can write 
 

 F = ma f = m
dv f

dt

!
"#

$
%&
fixed

,  (8.18) 

 
where the differentiation is carried out in the fixed system. Differentiating equation (8.16) 
we get 
 

 
 

dv f

dt

!
"#

$
%&
fixed

=
dV

dt

!
"#

$
%&
fixed

+
dv r

dt

!
"#

$
%&
fixed

+ !' ( r +' (
dr

dt

!
"#

$
%&
fixed

.  (8.19) 

 
Using equation (8.12) we can transform this equation as follows 
 

 

 

a f =
!!R f +

dv r

dt

!
"#

$
%&
rotating

+' ( v r
)

*
+
+

,

-
.
.
+ !' ( r +' (

dr

dt

!
"#

$
%&
rotating

+' ( r
)

*
+
+

,

-
.
.

= !!R f + ar + !' ( r + 2' ( v r +' ( ' ( r( ),

 (8.20) 

 
where 

 

!!R f = dV dt( )
fixed

. Correspondingly, the force on the particle as measured in the 
inertial frame becomes 
 
 

 
F = m!!R f + mar + m !! " r + m! " ! " r( ) + 2m! " v r .  (8.21) 
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Alternatively, the effective force on the particle as seen by an observer co-moving with 
the rotating system is 
 

 
 

F
eff
! mar

= F " m!!R f " m !# $ r " m# $ # $ r( ) " 2m# $ v r .
 (8.22) 

 
The first term is the total force acting on the particle as measured in the inertial frame. 
The second (

 
!m!!R f ) and third ( !m !" # r ) are due to the translational and angular 

accelerations, respectively, of the moving noninertial system. The fourth term 
(!m" # " # r( ) ) is the so-called centrifugal force (directed away from the centre of 
rotation), and finally, the last term (!2m" # v

r
) is the Coriolis force. It is important to 

note that the Coriolis force arises because of the motion of the particle in the rotating 
system, i.e., it disappears if v

r
= 0 . 

Equation (8.22) is a mathematical representation of what is meant by the statement that 
Newton’s Second Law does not apply in a noninertial reference frame.  It is not that the 
physics dealt with Newtonian mechanics cannot be analyzed in a noninertial frame, but 
that the form of the equations of motion is different. More precisely, if we set 

 

!!R f  and !!  
in equation (8.22) to zero to simplify things, we have in the rotating frame a more 
complicated equation of motion 
 
 Feff = mar +  (noninertial terms),  (8.23) 
 
where the “noninertial terms” are the centrifugal and Coriolis forces, than in an inertial 
frame where the equation of motion is simply 
 
 F = ma f . (8.24) 

Figure 8-3 – The inertial reference system !x !y !z  has its origin !O  at the centre of the 
Earth, and the moving frame xyz  has its centre near the Earth’s surface. The vector R  
gives the Earth’s radius. 
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8.3 Motion relative to the Earth 
We can apply the results obtained in the previous section to motion near the surface of 
the Earth. If we set the origin of the inertial (fixed) system !x !y !z  to be at the center of the 
Earth, and the moving (rotating) noninertial frame xyz  on the surface of the Earth, we 
can describe the motion of a moving object near its surface using equation (8.22). We 
denote by F = S + mg

0
 the total force acting on the object (of mass m ) where S  

represent any external forces (except gravity) and g
0
 is the gravitational acceleration 

 

 g
0
= !

GM
"

R
2
e
R
.  (8.25) 

 

In equation (8.25) G = 6.67 !10"11 N #m2 /kg2  is the universal gravitational constant, 
M

!
= 5.98 "1024  kg  is the mass of the Earth, and R = 6.38 !10

6
 m  its radius (see 

Figure 8-3). We assume that the Earth’s radius and gravitational field are independent of 
latitude. The effective force F

eff
 as measured in the moving frame near the surface of the 

Earth becomes 

 
 

 
F
eff
= S + mg

0
! m!!R f ! m !" # r ! m" # " # r( ) ! 2m" # v r .  (8.26) 

 
The Earth’s angular velocity vector is given by ! = 7.3"10

#5
e

$z
 rad/s  (i.e., it is directed 

along the !z -axis ), and we assume that it is a constant. The fourth term on the right hand 
side of equation (8.26) therefore equals zero. Also, from equation (8.12) we have 
 

 

 

!!R f =
d !R f

dt

!

"#
$

%&
rotating

+' ( !R f

= ' ( ' (
dR

dt

!
"#

$
%&
rotating

+' ( R
)

*
+
+

,

-
.
.

/
0
1

21

3
4
1

51

= ' ( ' ( R( ),

 (8.27) 

 
since R  is a constant. Inserting equation (8.27) in equation (8.26) we get 
 
 F

eff
= S + mg

0
! m" # " # r + R( )$% &' ! 2m" # v

r
. (8.28) 

 
The second and third terms on the right hand side of this equation can be combined into a 
single term for the effective gravitational acceleration g  that is felt near the surface of the 
Earth (i.e., on the surface of the Earth we cannot discerned between gravity g

0
 and the 

centrifugal acceleration ! " ! " r + R( )#$ %& , we can only feel the resulting acceleration g ) 
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 g = g

0
! " # " # r + R( )$% &'. (8.29) 

 
It is to be noted that because of the presence of the centrifugal acceleration 
! " # " # r + R( )$% &'  in this equation for the effective gravity, g and g

0
 will in general 

not point exactly in the same direction. This effect is rather small, but measurable as 
!R

2
g
0
= 0.0035 . It should also be clear from the equation (8.29) that the magnitude of 

the effect is a function of latitude.  
The equation for the effective force is then rewritten as 

 
 F

eff
= S + mg ! 2m" # v

r
 (8.30) 

 
As was pointed out earlier, the last term on the right hand side of equation (8.30) is 
responsible for the Coriolis effect. This effect is the source for some well-known motions 
of the air masses. To see how this happens, let’s consider the xyz  coordinate system to be 
located at some latitude !  where the angular velocity vector !  (which represents the 
Earth’s rotation) has a component !

z
e
z
 along the vertical at the specified latitude. If a 

particle is projected such that its velocity vector v
r
 is located in the xy  plane, then the 

Coriolis force will have a component directed to the right of the particle’s motion (see 
Figure 8-4). The size of this effect will be a function of the latitude, as the amplitude of 
!

z
 also exhibits such a dependency. So, consider a region where, for some reason, the 

atmospheric pressure is lower than it is in its surrounding (see Figure 8-5). As the air 
flows into this low-pressure spot from regions of higher pressure all around, the Coriolis 
effect will deflect the air motion to the right (in the Northern Hemisphere), resulting into 
counterclockwise, or cyclonic, motions in the atmosphere. 

As the following example will show, the Coriolis effect generally only becomes 
important for the motion of bodies near the surface of the Earth when large enough 
distance scales are considered. 
 

Figure 8-4 – In the Northern hemisphere, a particle projected in a horizontal plane will 
be directed to the right of its motion. The opposite will happen in the Southern 
Hemisphere. 
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Figure 8-5 – The Coriolis effect deflects the air in the Northern Hemisphere to the right 
producing cyclonic motion.  
Examples 
 
1. Free-falling object. Find the horizontal deflection caused by the Coriolis effect acting 
on a free-falling particle in the Earth’s effective gravitational field from a height 

 
h ! R( )  

above its surface. 
Solution. 
From equation (8.30), with S = 0 and F

eff
= ma

r
, we have 

 
 a

r
= g ! 2" # v

r
. (8.31) 

 

We choose the z-axis  attached (virtually) to the surface of the rotating Earth as directed 
outward along !g . We also choose the ex  and e

y  bases vectors such that they are in the 
southerly and easterly direction, respectively. The latitude is once again denoted by !  
(see Figure 8-6). With these definitions we can decompose the Earth’s angular velocity 
vector as  
 

 
!

x
= "! cos #( )

!
y
= 0

!
z
=! sin #( ).

 (8.32) 

 
Even though the Coriolis effect produces velocity components along ex  and e

y , we will 
neglect these since they will be significantly smaller than the velocity along !e

z
. Then, 

 

 
 

!x " !y " 0

!z " !gt,
 (8.33) 

 
where we assume that the particle is free-falling from rest. 
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Figure 8-6 – The coordinated system “attached” to the Earth’s surface, for finding the 
horizontal deflection of a free-falling particle. The ex  and e

y  bases vectors are, 
respectively, in the southerly and easterly direction. 
We now calculate the apparent acceleration component a

c
 due to the Coriolis term in 

equation (8.31) 
 

 

 

a
c
! !2 " ! cos #( )ex + sin #( )ez$% &' ( !gte

z$% &'{ }
! !2"gt cos #( ) ex ( ez$% &'

! 2"gt cos #( )ey .

 (8.34) 

 
Inserting equation (8.34) in equation (8.31) we find the apparent acceleration of the 
particle as seen from the Earth’s surface 
 
 

 
a
r
! 2!gt cos "( )ey # gez .  (8.35) 

  
If we assume that the initial conditions for the position of the particle are 
x

0
= y

0
= 0 and z

0
= h , we have after twice integrating equation (8.35) 

 

 
 

r t( ) !
1

3
!gt 3 cos "( )ex + h #

1

2
gt

2$
%&

'
()
ez .  (8.36) 

 
When the particle reaches the Earth’s surface we will have 

 
t ! 2h g , and finally for the 

horizontal deviation 
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d !
1

3
! cos "( )

8h
3

g
. (8.37) 

 
Thus, if an object is dropped from a height of 100 m at latitude 45°  north, it is deflected 
approximately by only 1.55 cm (we neglected any friction brought up by the presence of 
the atmosphere). 
 
2. Foucault’s pendulum. We set the origin of the noninertial xyz  coordinate system at the 
equilibrium point of the pendulum and the z-axis  along the local vertical. Describe the 
motion of the pendulum of length l  and mass m  in the small angle limit, taking into 
account the rotation of the Earth. 
 
Solution. The equation of motion is 
 

 a
r
= g +

T

m
! 2" # v

r
,  (8.38) 

 
where T  is the tension in the pendulum. If we restrict ourselves to small oscillations, we 
can write 
 

 
 

T ! !T
x

l
ex ! T

y

l
ey + Tez ,  (8.39) 

 
where we neglected second and higher order terms in x l  and y l . As in the previous 
example, we write 
 
 g = !ge

z
,  (8.40) 

 
and 
 

 
!

x
= "! cos #( )

!
y
= 0

!
z
=! sin #( ).

 (8.41) 

 
Again limiting ourselves to small angular displacements, we can write for the velocity of 
the pendulum 
 

 

 

v
r( )

x
= !x

v
r( )

y
= !y

v
r( )

z
" 0.

 (8.42) 
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Figure 8-7 – Geometry of Foucault’s pendulum. The acceleration vector is along the 
!z-axis , and the tension T  is broken down into components along the x-, y-, and z-  
axes. 
Using equations (8.41) and (8.42) to evaluate the Coriolis effect in equation (8.38), we 
can find the apparent acceleration of the pendulum as seen near the surface of the Earth 
(i.e., in the noninertial system) to be 
 

 

 

ar ! !
T

m

x

l
+ 2" "ysin #( )

$

%&
'

()
ex + !

T

m

y

l
! 2" "x sin #( )

$

%&
'

()
ex

+
T

m
+ 2" "ycos #( ) ! g

$

%&
'

()
ez .

 (8.43) 

 
If we concentrate on the motion in the xy  plane, and make the following substitutions 

 
T ! mg, !

0

2
" T ml ! g l ,  and ! z =! sin #( )  we find from equation (8.43) 

 

 
 

!!x +!
0

2
x " 2!

z
!y

!!y +!
0

2
y " "2!

z
!x,

 (8.44) 

 
which is a system of two coupled second order differential equations. In order to facilitate 
the solution of the system, we multiply the second these equations by the unit imaginary 
number i  and add it to the first equation. Then, defining the following complex variable 
 
 q ! x + iy,  (8.45) 
 
we have from equations (8.44) that 
 
 

 
!!q + 2i! z

!q +!
0

2
q " 0.  (8.46) 
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As we saw in Chapter 2 on oscillations, equation (8.46) describes the motion of a damped 
oscillator (with the difference that the damping factor is, in this case, purely imaginary). 
Referring to the results obtained in the aforementioned chapter, we can write the solution 
to equation (8.46) to be 
 
 

 

q t( ) ! Ae! i" z t cos t " z

2
+"

0

2
! #( ).  (8.47) 

  
We see that if the rotation of the Earth were ignored, we would retrieve the usual motion 
of a harmonic oscillator motion with 
 
 

 
q t( ) ! Acos !0

t " #( ), ! z = 0,  (8.48) 
  
and !

0
 is thus identified with the oscillation frequency of the pendulum. This frequency 

is much greater that the angular frequency of rotation of the Earth, which performs one 
complete rotation in approximately 24 hours. So, using the fact that 

 
!
0
!!

z
 in equation 

(8.47) we have 
 

 
 

q t( ) ! Ae! i" z t cos "
0
t ! #( )

! A cos " zt( ) ! i sin " zt( )$% &'cos "0
t ! #( ),

 (8.49) 

 
which implies, using equation (8.45), that (assuming we chose the initial condition such 
that A  is real) 
 

 
 

x t( ) ! Acos ! zt( )cos !0
t " #( )

y t( ) ! "Asin ! zt( )cos !0
t " #( ).

 (8.50) 

 
It now becomes easy to see that as the pendulum is oscillating at a frequency !

0
, it also 

performs a precession, or rotation in the xy  plane at a frequency of !
z
. The position 

angle made by the axis of oscillation in the xy  plane will change with time as the 
pendulum rotates, and it is given by 
 

 

 

! t( ) ! tan"1 y t( )

x t( )

#

$
%

&

'
(

! tan
"1

" sin )
z
t( )

cos )
z
t( )

#

$
%
%

&

'
(
(

! ")
z
t = ")t sin *( ).

 (8.51) 


