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Chapter 6. The Hydrogen Atom 
 

Notes: 
• Most of the material in this chapter is taken from Thornton and Rex, Chapter 7. 

6.1 The Schrödinger Equation of the Hydrogen Atom 
We now apply the time-independent Schrödinger equation to solve the hydrogen atom. 
That is, we will endeavour to determine its wave functions and other important 
parameters related to them, e.g., their energy and angular momentum. This is an 
important problem not only because hydrogen is the most abundant and fundamental 
atom in the universe, but also because it can be solved exactly. The solution thus obtained 
can then be compared to experiments, as well as with the earlier atomic model of Bohr. 
 
A few aspects of the problem first need to be established and dealt with before we can 
proceed and analyse it. Perhaps the most important concerns the potential energy of the 
system. This energy is the one that defines the interaction between the nucleus (i.e., the 
proton) and the electron, and is therefore electrostatic in nature 
 

 V r( ) = − e2

4πε0r
,   (6.1) 

 
with r  the distance between the two particles. The Schrödinger equation also contains a 
term for the kinetic energy of the system, defined as the square of the momentum divided 
by twice the mass. One question that arises at this point concerns the identification of this 
mass; what should it be? We saw in Problem 3 of the Second Assignment the correct 
equation for the values of r  within the context of the Bohr atomic model are obtained 
when the reduced mass is used 
 

 µ = meM n

M n +me

  (6.2) 

 
instead of the electron mass, with me  and M n  are the masses of the electron and nucleus, 
respectively. Although we will not formerly proof this here, the same applies for the 
Schrödinger model of the hydrogen atom; we must use the reduced mass.  
 
While we have so far only dealt with one-dimensional problems (e.g., the particle in a 
box and the barrier potential), it is the case that the problem we are now facing is three-
dimensional. We should therefore resort to using not only the Cartesian x  coordinate, for 
example, but all three such variables x, y, z( ) . Although the problem could in principle be 
solved using Cartesian coordinates, the spherical symmetry of the hydrogen atom does 
not lend itself well to such approach. Indeed, Cartesians coordinates are perfectly adapted 
to problems of rectangular symmetries (e.g., a “two-” or three-dimensional box) but are 
poorly suited to spherically symmetric configurations. This symmetry of the hydrogen 
atom is set by the electrostatic potential of equation (6.1), which only depends on the 
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distance between the proton and electron. Since using Cartesian coordinates would thus 
unnecessarily complicate the solution of the problem, we adopt the so-called spherical 
coordinates r,θ ,φ( )  defined through (see Figure 1) 
 

 
x = r sin θ( )cos φ( )
y = r sin θ( )sin φ( )
z = r cos θ( ),

  (6.3) 

 
or 
 

 

r = x2 + y2 + z2

θ = cos−1 z
r

⎛
⎝⎜

⎞
⎠⎟

= tan−1 x2 + y2

z

⎛

⎝
⎜

⎞

⎠
⎟

φ = tan−1 y
x

⎛
⎝⎜

⎞
⎠⎟ .

  (6.4) 

 
The variables θ  and φ  are the polar and azimuthal angles, respectively. Accounting for 
equations (6.1) to (6.4) we can write the Schrödinger equation as 
 

 
 
Eψ r,θ ,φ( ) = − 

2

2µ
∇2 +V r( )⎡

⎣
⎢

⎤

⎦
⎥ψ r,θ ,φ( ).   (6.5) 

 
The last thing for us to do then is to also write the expression for the Laplacian ∇2  using 
spherical coordinates. Formally, we need to transform the Cartesian coordinates version 

Figure 1 – Relationship between 
the spherical and Cartesian sets 
coordinates. 
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 ∇2 = ∂2

∂x2
+ ∂2

∂y2
+ ∂2

∂z2
  (6.6) 

 
to its spherical coordinates equivalent with equations (6.3). A derivation of how this is 
done is beyond the scope of our analysis, and we will simply insert the corresponding 
transformation in the Schrödinger equation 
 

 
 

1
r2

∂
∂r

r2 ∂ψ
∂r

⎛
⎝⎜

⎞
⎠⎟ +

1
r2 sin θ( )

∂
∂θ

sin θ( ) ∂ψ
∂θ

⎡
⎣⎢

⎤
⎦⎥
+ 1
r2 sin2 θ( )

∂2ψ
∂φ 2

+ 2µ
2

E −V r( )⎡⎣ ⎤⎦ψ = 0,  (6.7) 

 
where it is understood that ψ =ψ r,θ ,φ( ) . 
 
As we did when we solved the time-dependent Schrödinger equation for the case of a 
conservative system, we will now assume that the wave function can be separated into a 
product of three functions, one for each variable. That is, we write 
 
 ψ r,θ ,φ( ) = R r( ) f θ( )g φ( ).   (6.8) 
 
Insertion of this relation in equation (6.7), and dividing by ψ r,θ ,φ( )  yields the following 
second-order differential equation 
 

 
 
−
sin2 θ( )
R

d
dr

r2 dR
dr

⎛
⎝⎜

⎞
⎠⎟ −

2µ
2

r2 sin2 θ( ) E −V r( )⎡⎣ ⎤⎦ −
sin θ( )
f

d
dθ

sin θ( ) df
dθ

⎡
⎣⎢

⎤
⎦⎥
= 1
g
d 2g
dφ 2

.  (6.9) 

 
We note that the left-hand side of this equation is a function of r  and θ , while the right-
hand side only involves φ . For the same reasons evoked when separating the time-
dependent Schrödinger equation into a product of a spatial and a temporal equation, we 
can write 
 

 1
g
d 2g
dφ 2

= −m2,   (6.10) 

    
with m  a constant (please note that it is not a mass). It is straightforward to verify that 
equation (6.10) allows as solution 
 
 gm φ( )∝ e jmφ .   (6.11) 
 
By inserting equation (6.10) on the right-hand side of (6.9) we find that we can further 
separate its left-hand side to 
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1
R
d
dr

r2 dR
dr

⎛
⎝⎜

⎞
⎠⎟ +

2µr2

2
E −V r( )⎡⎣ ⎤⎦ =

m2

sin2 θ( ) −
1

f sin θ( )
d
dθ

sin θ( ) df
dθ

⎡
⎣⎢

⎤
⎦⎥

=  +1( ),
  (6.12) 

 
with    yet a new constant. We are then left with the following two differential equations 
to solve 
 

 

 

1
r2

d
dr

r2 dR
dr

⎛
⎝⎜

⎞
⎠⎟ +

2µ
2

E −V r( )− 
2

2µ
 +1( )
r2

⎡

⎣
⎢

⎤

⎦
⎥R = 0

1
sin θ( )

d
dθ

sin θ( ) df
dθ

⎡
⎣⎢

⎤
⎦⎥
+  +1( )− m2

sin2 θ( )
⎡

⎣
⎢

⎤

⎦
⎥ f = 0.

  (6.13) 

 
Although we will not solve these differential equations, we can gain some insight by 
looking more closely at the radial equation in the simplest case when   = 0 . The first of 
equations (6.13) then becomes 
 

 
 

d 2R
dr2

+ 2
r
dR
dr

+ 2µ
2

E + e2

4πε0r
⎛
⎝⎜

⎞
⎠⎟
R = 0,   (6.14) 

 
where we used equation (6.1) for the potential energy. It can easily be verified that 
equation (6.14) allows solutions of the type 
 
 R r( ) = Ae−r a0 ,   (6.15) 
 
with A   and a0  some constants. Inserting equation (6.15) into (6.14) yields 
 

 
 

1
a0
2 +

2µ
2

E
⎛
⎝⎜

⎞
⎠⎟
+ 2µe2

4πε0
2 −

2
a0
2

⎛
⎝⎜

⎞
⎠⎟
1
r
= 0,   (6.16) 

 
which in order to be verified for all values of r  requires that 
 

 

 

a0 =
4πε0

2

µe2

= 5.29 ×10−11m
  (6.17) 

 
and 
 

 

 

E = − 
2

2µa0
2

= −E0.
  (6.18) 
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It is therefore very rewarding to see that we recover the same relations for the Bohr radius 
and energy as we derived when dealing with the more primitive model of Bohr. It can 
also be shown that the full solution to the first of equations (6.13) admits a family of 
functions that are characterized through the introduction of a quantum number 
 n = 1, 2, 3,… in addition to    such that the exponent of the radial function scales with 
na0  and the energy as En = −E0 n2 . Note that both n  and    are integers. These results 
are once again in agreement with Bohr’s model. The first few radial solutions  Rn r( )  for 
a small range of values for n  and    are shown in Table 7.1 above. We note the further 
restriction  0 ≤  ≤ n −1 .  
 
The second of equations (6.13) can also be solved to yield a family functions of the polar 
angle θ , which are denoted by  fm θ( )  from their further dependency on the two quantum 
numbers    and m . These functions are usually combined with the azimuthal solutions 
gm φ( )  given in equation (6.11) to yield the so-called spherical harmonics 
 
  Ym θ ,φ( ) = fm θ( )gm φ( ).  (6.19) 
 
The first few spherical harmonics for a small range of values for    and m  are shown in 
Table 7.2 below. We note the further restriction  m ≤  , which implies that m  can be 
either a negative or positive integer. 
 
We therefore summarise the solutions of the Schrödinger equation for the hydrogen atom 
with the following family of normalized wave functions 
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  ψ nm r,θ ,φ( ) = Rn r( )Ym θ ,φ( ),   (6.20) 
  
where it is understood that the three quantum numbers verify  n = 1, 2, 3,…,  0 ≤  ≤ n −1 , 
and  m ≤  , which we will soon discuss in more details.  
 
We also note that both the radial functions and spherical harmonics are independently 
normalized. But we must be careful in considering the normalization process. This is 
because as we move from Cartesian to spherical coordinates we must make the following 
substitution in the normalization integral 
 
 dxdydz = r2 sin θ( )dr dθ dφ,   (6.21) 
 
and therefore 
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ψ nm r,θ ,φ( ) 2 r2 sin θ( )dr

0

∞

∫ dθ
0

π

∫ dφ
0

2π

∫ = 1.   (6.22) 

 
This can alternatively be written as 
 

 

 

Rn r( ) 2 r2 dr
0

∞

∫ = 1

Ym θ ,φ( ) 2 sin θ( )dθ
0

π

∫ dφ
0

2π

∫ = 1.
  (6.23) 

 
The energy of the atom, not subjected to an external field, in a given stationary state  ψ nm  
is solely determined by the principal quantum number n  through 
 

 

 

En = − µ
2

e2

4πε0
⎛
⎝⎜

⎞
⎠⎟

2
1
n2

= − E0
n2
.

  (6.24) 

 
The lowest-energy stationary state n = 1  is called the ground state, for which 
E0 = 13.6 eV , while those corresponding to greater values of the principal quantum 
number are excited states. 
 
The quantum number    is called the orbital angular quantum number. We refer to the 
first of equations (6.13) to understand why it is defined this way. That is, let us write 
 

 
 
Krot =

 +1( )2
2µr2

,   (6.25) 

 
which we know has units of energy. Because we also know that the Planck constant    
has units of angular momentum, it is tempting to define 
   
  L =  +1( )   (6.26) 
 
for the magnitude of the orbital angular momentum of the atom and relate equation (6.25) 
to its kinetic energy of rotation 
 

 Krot =
L2

2I
,   (6.27) 

 
where I = µr2  is the moment of inertia associated with the atom. Although the 
expression for the magnitude of the orbital angular momentum may appear a little strange 
by the presence of   +1( )  instead of   , we note that it is consistent with Bohr’s 
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correspondence principle since  
2   +1( )  for large values of   . With this 

understanding of the meaning for quantum numbers n  and    we find the surprising 
result that the ground state of the hydrogen atom has no orbital angular momentum. This 
result is at odds with the prediction of the Bohr model. The same can be said for any state 
when   = 0 . Finally, the letters ‘s’, ‘p’, ‘d’, ‘d’, ‘g’, etc., are usually associated with 
values of ‘0’, ‘1’, ‘2’, ‘3’, ‘4’, etc. for   . The energy-orbital angular momentum states 
are therefore denoted by 1s, 2s, 2p, 3s, 3p, 3d, etc. 
 
Let us now consider the z  component of the angular momentum operator  
 

 

 

L̂z = r × p̂[ ]z
= xp̂y − yp̂x

= − j x ∂
∂y

− y ∂
∂x

⎛
⎝⎜

⎞
⎠⎟
.

  (6.28) 

 
We can use the chain rule to write 
 

 

∂
∂x

= ∂r
∂x

∂
∂r

+ ∂θ
∂x

∂
∂θ

+ ∂φ
∂x

∂
∂φ

∂
∂y

= ∂r
∂y

∂
∂r

+ ∂θ
∂y

∂
∂θ

+ ∂φ
∂y

∂
∂φ
,
  (6.29) 

 
and 
 

 x ∂
∂y

− y ∂
∂x

= x ∂r
∂y

− y ∂r
∂x

⎛
⎝⎜

⎞
⎠⎟
∂
∂r

+ x ∂θ
∂y

− y ∂θ
∂x

⎛
⎝⎜

⎞
⎠⎟
∂
∂θ

+ x ∂φ
∂y

− y ∂φ
∂x

⎛
⎝⎜

⎞
⎠⎟
∂
∂φ
.   (6.30) 

 
Using equations (6.4) to calculate the needed derivatives we find that the first two terms 
within parentheses on the right-hand side of equation (6.30) equal zero and 
 

 

x ∂
∂y

− y ∂
∂x

= 1+ y
2

x2
⎛
⎝⎜

⎞
⎠⎟

d
d y x( ) tan

−1 y
x

⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥
∂
∂φ

= 1+ y
2

x2
⎛
⎝⎜

⎞
⎠⎟

1
1+ y x( )2
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

∂
∂φ

= ∂
∂φ
,

  (6.31) 

 
which yields 
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L̂z = − j ∂

∂φ
.   (6.32) 

 
Referring to equations (6.11), (6.19), and (6.20) we then find the important result that 
 
  L̂zψ nm r,θ ,φ( ) = mψ nm r,θ ,φ( ).   (6.33) 
 
The quantum number m  is therefore to be associated with the component of the orbital 
momentum directed along the z-axis . A representation for this is shown in Figure 2 for 

  = 2 . Note that 
 
L̂z < L =  +1( )  always, and therefore the operator L̂  can never be 

directed along L̂z . We note that the choice of the z-axis  for this quantum number is 
entirely arbitrary, any of the other two axes would evidently work just as well. It is 
important to realize, however, that only one axis can be quantized. For example, if we 
know    and m , then we also know precisely the values for L  and L̂z . The additional 

knowledge of, say, L̂x  would then further yield an equally precise determination of 

L̂y = L2 − L̂x
2 − L̂z

2 . This is equivalent to confining the motion of the electron to a plane, 
which would then imply that its linear momentum in a direction perpendicular to that 
plane (i.e., along L̂ ) would be exactly zero. This is, of course, forbidden by the 
Heisenberg inequality  ΔriΔpi ≥  2 , with i  specifying the x-, y-, or z-axis ; only one 
component of the orbital angular momentum can be quantized.  
 
The quantum number m  is referred to as the magnetic quantum number. This is because 
the z-axis  will usually be chosen to be aligned with an external magnetic field, when one 

Figure 2 – Representation of orbital 
angular momentum vector operator for 

.  
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is present, since as can be shown, the orbital angular momentum operator L̂ , which is 
parallel to the magnetic moment of the atom (see Exercise 4 below), will precess about 
the magnetic field. The axis defined by the magnetic field is therefore a natural choice for 
the quantization of L̂z .   
 
Exercises 
 
1. Although we did explain the origin of the orbital angular momentum quantum number 
  , we have not justified the choice for   +1( )  instead of, say,  2  when separating the 
Schrödinger equation for the hydrogen atom. Show that the mean value of the square of 
the orbital angular momentum can be evaluated with L2 = 3 Lz

2  and the choice of 

  +1( )  follows naturally from the fact that  − ≤ m ≤  . 
 
Solution. 
 
Since there is nothing special about the choice of the x-, y-, and z-axis , i.e., different 
people may orient them differently, the average values of the corresponding orbital 
angular momentum components must be equal Lx

2 = Ly
2 = Lz

2 . We therefore have 
 

 
L2 = Lx

2 + Ly
2 + Lz

2

= 3 Lz
2 .

  (6.34) 

 
We now calculate 
 

 

 

Lz
2 = 1

2+1
m( )2

m=−



∑

= 2

2+1
2 m2

m=1



∑

= 2

2+1
2  +1( ) 2+1( )

6
⎡
⎣⎢

⎤
⎦⎥

=
 +1( )
3

,

  (6.35) 

 
where we have used the identity 

 
m2

m=1

∑ =  +1( ) 2+1( ) 6 .  It follows from equations 
(6.34) and (6.35) that 
 
  L

2 =  +1( )2.   (6.36) 
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2. Find the most probable radius for the electron of a hydrogen atom in the 1s and 2p 
states. 
 
Solution.  
 
For the 1s state we have (note the “ r2 ” term)  
 

 
P10 r( ) = r2 R10 r( ) 2

= 4r
2

a0
3 e

−2r a0 ,
  (6.37) 

 
and the most probable radius is determined by solving dP10 r( ) dr = 0 . We then write 
 

 
dP10 r( )
dr

= 4
a0
3 2r − 2r

2

a0

⎛
⎝⎜

⎞
⎠⎟
e−2r a0

= 0,
  (6.38) 

 
or r = a0 . 
 
For the 2p state P21 r( ) = r4 24a0

5( )e−r a0  and 
 

 
dP21 r( )
dr

= 1
24a0

5 4r3 − r
4

a0

⎛
⎝⎜

⎞
⎠⎟
e−r a0

= 0,
  (6.39) 

 
or r = 4a0 .      
 
3. Calculate the average orbital radius of a 1s electron in the hydrogen atom. 
 
Solution. 
 
The average radius for that state is given by 
 

 
r = R10

∗ r( )rR10 r( )r2 dr
0

∞

∫
= 4
a0
3 r3e−2r a0 dr

0

∞

∫ ,
  (6.40) 

 
which is solved by successively integrating by parts three times to obtain 
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r = 4

a0
3 ⋅
3a0

4

8

= 3
2
a0.

  (6.41) 

  
4. The magnetic moment µ  associated with a current loop of current I  has a magnitude 
equal to IA , where A  is the area contained within the loop, and is oriented along the axis 
perpendicular to the plane of the loop in a direction consistent with the right-hand rule.  
 
(a) Use classical physics to show that the magnetic moment of an electron tracing a 
simple circular current loop is 
 

 µ = − e
2me

L.  (6.42) 

  
(b) Show that equation (6.42) is also valid in quantum mechanics for the hydrogen atom 
by considering the component µ̂z , if we replace the electron mass by the reduced mass. 
Also, show that the expected value of this magnetic moment operator is 
 

 µz = − me

µ
µBm,   (6.43) 

 
with m  the magnetic quantum number and the Bohr magneton 
 

 
 
µB =

e
2me

.   (6.44) 

 
Solution. 
 
(a) We consider an electron of charge −e  going around on a circle of radius r  at speed v  
and, for simplicity, we set the loop in the xy-plane  with the centre of the circle at the 
origin. Using the definition for the magnetic moment we write 
 

 

 

µz = − ev
2πr
I


⋅πr2
A


= − e
2me

⋅mevr

= − e
2me

Lz .

  (6.45) 

 
Since the current loop could be oriented in any manner we may choose this equation can 
be generalize vectorially as follows 
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 µ = − e
2me

L.  (6.46) 

 
(b) For the quantum mechanical hydrogen atom’s magnetic moment component µ̂z , we 
should consider the azimuthal velocity operator v̂φ  and its corresponding orbital radius 
r sin θ( ) . The quantum mechanical magnetic moment operator is therefore 
 

 

 

µ̂z = −
ev̂φ

2πr sin θ( )
I

  
⋅πr2 sin2 θ( )

A
  

= − e
2µ

⋅µv̂φr sin θ( )

= − e
2µ

L̂z .

  (6.47) 

 
However, we can use equation (6.32) to transform equation (6.47) to 
 

 

 

µ̂z = j e
2µ

∂
∂φ

= j me

µ
µB

∂
∂φ
.
  (6.48) 

 
The expected value of this magnetic moment operator is calculated using equation (6.22)  
 

 

 

µ̂z = Rn
∗ r( )Ym∗ θ ,φ( ) µ̂zRn r( )Ym θ ,φ( )r2 sin θ( )dr

0

∞

∫ dθ
0

π

∫ dφ
0

2π

∫
= j me

µ
µB Rn

∗ r( )r2Rn r( )dr
0

∞

∫ ⋅ Ym
∗ θ ,φ( ) ∂

∂φ
Ym θ ,φ( )sin θ( )dθ

0

π

∫ dφ
0

2π

∫
  (6.49) 

 
but using equations (6.23) and 
 

 
 

∂
∂φ
Ym θ ,φ( ) = jmYm θ ,φ( )   (6.50) 

 
we finally get 
 

 

 

µ̂z = j me

µ
µB ⋅ jm Ym θ ,φ( ) 2 sin θ( )dθ

0

π

∫ dφ
0

2π

∫

= − me

µ
µBm.

  (6.51)  
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6.2 The Electron Intrinsic Angular Momentum or Spin 
As we will see in the Third Assignment, an external magnetic field will interact with the 
magnetic moment of the hydrogen atom (or any atom or molecule, for that matter). This 
interaction adds a small amount to the energy level En  of a stationary state  ψ nm  (see 
equation (6.24)) that is proportional to the magnetic quantum number m . This means that 
the energy levels are not solely dependent on n  anymore, but also on m  and the external 
magnetic field strength. For example, the energy levels for a np  state (i.e.,   = 1) will be 
unchanged at En  for the m = 0  state, while it will increase by µBB  for m = 1  and 
decrease by the same amount for m = −1  (B  is the magnetic field strength). Although 
these energy changes are small, they were easily measurable well before modern 
quantum mechanics was developed. They would manifest themselves through the 
appearance of spectral lines at the corresponding energies (frequencies νn = En h ); this is 
the co-called normal Zeeman effect. 
 
It soon became clear, however, that the spectra measured for different atoms subjected to 
an external magnetic field where more complicated than predicted by the normal Zeeman 
effect. In particular, it was realized from an experiment by Samuel Goudsmit (1902-
1978) and George Uhlenbeck (1900-1988) that another magnetic moment component 
was needed beyond that due to the orbital angular momentum to explain their result. It 
was, in fact, Goudsmit and Uhlenbeck who proposed that the electron must possess an 
intrinsic magnetic moment, which would presumably result from an intrinsic angular 
momentum called spin. Although it is tempting to associate this intrinsic angular 
momentum with a rotation of the electron about “an axis going through its centre,” this 
interpretation quickly runs into troubles and the spin is known to be a purely quantum 
mechanical phenomenon. In particular, it is found that the spin operator Ŝ  is, not unlike 
the orbital angular momentum L̂ , characterized by an intrinsic spin quantum number 
s = 1 2  and a magnetic spin quantum number ms = ±1 2 . It is commonly said that the 
spin is pointing up when ms = 1 2  and down if ms = −1 2 . These new quantum numbers 
play the same roles as    and m , respectively, but it is very important to note that in the 
case of the electron they are half-integers. As a result we have the following relation for 
the magnitude of the electron spin operator 

 
S = Ŝ = s s +1( )  = 3 4  . Furthermore, if 

we define the magnetic moment associated to the orbital angular momentum of an 
electron with (see Exercise 4 above) 
 

 
 
µ̂ = − gµB


L̂,   (6.52) 

 
where  g = 1, then magnetic moment due to the intrinsic spin is 
 

 
 
µ̂ s = − gsµB


Ŝ,   (6.53) 

 
with gs = 2 . The constants  g  and gs  are gyromagnetic ratios.  



 

 -       -  115 

 
The intrinsic spin is a most important characteristic of all fundamental particles. In fact, 
particles are divided in two overarching families depending on the type of spin they 
possess. Particles that have a half-integer spin, such as the electron with s = 1 2 , are 
called fermions, while the others that have integer spin (including zero), like the photon 
with s = 1 , are called bosons. This differentiation is very important as the two groups 
follow completely different statistics; fermions follows the Fermi-Dirac distribution and 
the bosons the Bose-Einstein distribution. We also note that non-fundamental particles 
can also have a spin, e.g., the proton has a s = 1 2  spin. 
 
 
 


