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Chapter 4. Vibrational and Rotational States 
Notes: 
• Most of the material presented in this chapter is taken from Bunker and Jensen 

(2005), Chaps. 4 and 5, Bunker and Jensen (1998), Chap. 11, and Kroto1, Chap. 3.  

4.1 Vibrational States 
From equation (3.107) we can write the quantum mechanical harmonic oscillator 
Hamiltonian to be 
 

 Ĥvib
0 =

1
2

P̂k
2 + !kQk

2( )
k=1

3N "6

# ,  (4.1) 

 
which is one part of the more general vibrational Hamiltonian 
 
 Ĥvib = Ĥvib

0 +VN,n
anh .  (4.2) 

 
For what will follow, we will mainly focus on the harmonic oscillator approximation with 
equation (4.1).  

4.1.1 The Non-degenerate Harmonic Oscillator 
In cases where all the eigenvalues !k  are different (i.e., there is no degeneracy) the 
Hamiltonian is composed of 3N ! 6  independent harmonic oscillators, thus its name. The 
one-dimensional harmonic oscillator wave equation is given by 
 

 Ĥho ! =
1
2
P̂2 + "Q2( ) ! = E! ! ,  (4.3) 

  
where we will write !" Q( ) = Q "  for the wave (eigen)function of energy (eigenvalue) 
E! . It will be useful for the analysis that follows to introduce the following operators 
 

 R̂± =
1
2
P̂ ± i!1 2Q( ).  (4.4) 

 
It is also interesting to calculate the commutators 
 

 

 

Ĥho ,R
±!" #$ =

1
2 2

±i%1 2 P̂2 ,Q!" #$ + % Q2 , P̂!" #${ }
=

1
2 2

±i%1 2 &2i!P̂( ) + % 2i!Q( ){ } = ±!%1 2R̂± .
 (4.5) 

                                                
1 Kroto, H. W. 1992, Molecular Rotation Spectra (New York: Dover). 
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Because of this relation, it is easy to show that 
 
 

 
Ĥho R̂± !( ) = E! ± !"

1 2( ) R̂± ! .  (4.6) 
 
This implies that R̂± !  is also an eigenvector of the Hamiltonian, but this new 
eigenvector has its energy level shifted by  ±!!

1 2  from that of ! . For this reason 

R̂+  and R̂!  are called ladder operators. As will be shown below, starting with any ket 
!  we can span the whole set of eigenvectors by successive application of R̂+  and R̂! . 

The Hamiltonian can also be expressed as a function of the operators with 
 

 
 
Ĥho = R̂

± R̂! ±
1
2
"!1 2 .  (4.7) 

 
In order to identify the set of eigenvectors and their associated energy levels, we need to 
determine !  (or !1 2 ). To do so, let’s consider the following relation 
 

 

 

!"
# Q( ) R̂± R̂!( )!" Q( )dQ$ = R̂!!" Q( )%& '(

#
R̂!!" Q( )%& '(dQ$

= R̂!!" Q( ) 2 dQ$ > 0,
 (4.8) 

 
which implies that  R̂± R̂!  is Hermitian with real and positive eigenvalues. Since the 
Hamiltonian is also Hermitian with real eigenvalues, we deduce from equation (4.7) that 
!1 2  (and by the same token ! ) must be real. We further define !1 2  to be positive, as 
this is equivalent to defining R̂+  and R̂!  in equations (4.4). It is therefore apparent from 
equation (4.7) that the eigenvalues of the Hamiltonian are not only real, but also positive. 
We will denote the minimum energy value by E0  with an associated wave function 
!0 Q( ) , and since R̂!  decreases the energy we must have 
 

 
 
R̂!"0 Q( ) = 1

2
!i! #

#Q
! i$1 2Q

%
&'

(
)*
"0 Q( ) = 0. (4.9) 

 
This first order differential equation can be solved to give (with a given convention for 
normalization)  
 

 
 
!0 Q( ) = "1 2

#!
$
%&

'
()

1 4

e
*
"1 2Q2

2! . (4.10) 

 
It is costmary to set  !

1 2 " !# , so that 
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 !0 Q( ) = "
#

$
%&

'
()
1 4

e
*
"Q2

2 . (4.11) 

 
Furthermore, with the combination of equations (4.7) and (4.9) we have 
 

 
 
R̂+ R̂!"0 Q( )#$ %& = Ĥho !

1
2
!2'(

)*
+
,-
"0 Q( ) = 0,  (4.12) 

 
and 
 

 
 
E0 =

1
2
!2! .  (4.13) 

 
Since from equation (4.6) every application of R̂+  on !0 Q( )  will increase the energy by 

 !
2! , then we find that 

 

 
 
E! = ! +

1
2

"
#$

%
&'
!2( .  (4.14) 

 
In a similar fashion, given a wave vector !  we can determine ! ±1  with 
 
  ! !1 = N! R̂

! ! ,  (4.15) 
 
where  N!  is normalization factor to be determined. To do so we consider 
 

 

 

! !1! !1 = N!
2
! R̂± R̂! !

= N!
2
! Ĥvib

0 !
1
2
"2"#

$%
&
'( !

= N!
2
! + 1

2
!
1
2

#
$%

&
'( "

2"

= 1,

 (4.16) 

 
where equation (4.7) was used for the second step. The normalization factor N±  can 
easily be determined with this equation. The choice of the phase for N±  is usually chosen 
so that  
 

 
 
N± = !i ! +

1
2
±
1
2

"
#$

%
&'
"2()

*+
,
-.

/1 2

. (4.17) 
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With this result and starting with equation (4.11), while using equations (4.4), one can 
show that 
 

 !" Q( ) = N"H" # 1 2Q( )e$
#Q2

2 ,  (4.18) 
 
where 
 

 N! =
" 1 4

2!# 1 2!!
 (4.19) 

 
and H! " 1 2Q( )  are the so-called Hermite polynomials. For example, it can be shown that 
 

 

H0 ! 1 2Q( ) = 1
H1 ! 1 2Q( ) = 2! 1 2Q
H2 ! 1 2Q( ) = 4!Q2 " 2

H 3 ! 1 2Q( ) = 8! 3 2Q3 "12! 1 2Q,

 (4.20) 

   
and so on. In summary, for a molecule, whose vibrational Hamiltonian (with no 
degeneracy) is given by  
 

 Ĥvib
0 =

1
2

P̂k
2 + !kQk

2( )
k=1

3N "6

# ,  (4.21) 

 
the wave functions associated with this Hamiltonian are given by 
 

 

 

!vib = !"1
Q1( )!"2

Q2( )!!"3N#6
Q3N #6( )

= exp #
1
2

$ jQj
2

j=1

3N #6

%
&

'(
)

*+
N"k

H"k
$ k
1 2Q( )

k=1

3N #6

, ,
 (4.22) 

 
with corresponding energy levels 
 

 
 
Evib = !k +

1
2

"
#$

%
&'
!2( k

k=1

3N )6

* .  (4.23) 

 
It is important to realize that if such a molecule were left on its own (i.e., there are no 
perturbations to the Hamiltonian), then the wave functions representing its states would 
never mix. This is because these wave functions form the basis that diagonalizes the 
Hamiltonian. That is, if we calculate the elements of the Hamiltonian “matrix” we find 
that 
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 ! Hvib

0 "! = E "! ! "! = E "! #! "! .  (4.24) 
 
This result shows that there are no elements “off the diagonal of the matrix”, and there 
are therefore no interaction between the different states. But of course, this is a highly 
idealized situation. For example, using the more general vibrational Hamiltonian of 
equation (4.2) we find that  
 

 
! Hvib "! = ! Hvib

0 +VN,n
anh( ) "!

= E "! #! "! + ! VN,n
anh "! .

 (4.25) 

 
Therefore, depending on the exact nature of VN,n

anh  it is possible that the last term on the 
right hand side of this equation be not zero, even when ! " #! . 
Let’s consider the simple case of a molecule that has only one normal mode of vibration, 
and where the anharmonic potential (a perturbation) can be approximated by 
 
 VN,n

anh = aQ3,  (4.26) 
 
with a  some constant. To see the effect that this cubic term has on the molecule we will 
need to consider the following expression (easily derived from equations (4.4)) 
 

 
 
Q =

1
2i!!

R+ " R"( ).  (4.27) 

 
Incidentally, it is also true that 
 

 P̂ =
1
2
R+ + R!( ).  (4.28) 

 
We now use the completeness relation twice (see equation (1.16)) to calculate 
 

 
! VN,n

anh "! = a ! Q3 "!

= a ! Q µ µ Q # # Q "!
µ ,#
$ ,  (4.29) 

 
which we further transform with the information contained in equation (4.27)   
 

 

! VN,n
anh "! = a ! Q ! #1 ! #1 Q ! # 2 ! # 2 Q "!$%

+ ! Q ! #1 ! #1 Q ! ! Q "!
+ ! Q ! +1 ! +1 Q ! ! Q "!

+ ! Q ! +1 ! +1 Q ! + 2 ! + 2 Q "! &'.

 (4.30) 
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This shows that the states satisfying the conditions ! " 2 = #! ±1 , ! = "! ±1, or 
! + 2 = "! ±1  (or alternatively ! = "! ±1 or ! = "! ± 3 ) can mix. 
As will be emphasized in later chapters, this is the basic process through which a 
molecule changes states. For example, the interaction of molecule with a radiation field 
will be modeled by introducing a perturbation Hamiltonian that will connect different 
states in a manner similar to what was detailed with equations (4.29) and (4.30). If a 
molecule absorbs a photon, it must make a transition from its initial state to a final state 
that will satisfy mixing relations (the so-called selection rules) established by the detailed 
nature of the perturbation (or interaction) Hamiltonian.  

Finally, it can be shown that the non-vanishing matrix elements of Q and P̂  are  
 

 

 

! +1Q ! = ! +1( ) 2"( ), ! +1 P̂ ! = i! ! +1( )" 2,

! #1Q ! = ! 2"( ), ! #1 P̂ ! = #i! !" 2.
 (4.31) 

4.1.2 The Two-dimensional (Degenerate) Harmonic Oscillator 

If it happens that two eigenvectors !a  and !b  of a harmonic oscillator have a 
common energy such that ! a = ! b " ! , then it is not possible to completely specify the 
states of the system using only its total energy. That is, the total energy of this two-
dimensional oscillator is given by 
 

 
 
E !a ,!b( ) = !a +

1
2

"
#$

%
&'
+ !b +

1
2

"
#$

%
&'

(
)*

+
,-
!2. ,  (4.32) 

 
and it is clear that 
 

 
 

E 0,1( ) = E 1,0( ) = 2!2!
E 0,2( ) = E 1,1( ) = E 2,0( ) = 3!2! ,

 (4.33) 

 
and so on. Continuation of this process would show that each energy level has 
degeneracy of !a +!b +1( ) . The complete specification of the state of the oscillator 
would require the knowledge both !a  and !b . 

On the other hand, we are not restricted to using these two quantum numbers. We could 
introduce different coordinates to formulate the problem, along the appropriate 
eigenvectors, and labels needed to specify the state of the oscillator. To make this clearer, 
consider the new coordinates Q and !  such that 
 

 
Qa = Qcos !( )
Qb = Qsin !( ).  (4.34) 
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For what will follow, it will be necessary to express the two-dimensional harmonic 
oscillator Hamiltonian Ĥ tdho  with these coordinates. Since Q and !  are basically 
ordinary polar coordinates, it should be clear that in coordinate space 
 

 

 

P̂2 = P̂a
2 + P̂b

2 = !!2" #"

= !!2
$2

$Q2 +Q
!1 $
$Q

+ Q!1( )2 $2

$% 2

&

'
(

)

*
+

Vtdho =
1
2
!2, 2 Qa

2 +Qb
2( ) = !2, 2Q2 ,

 (4.35) 

 
and therefore 
 

 
 
Ĥ tdho =

!2

2
!

"2

"Q2 +Q
!1 "
"Q

+ Q!1( )2 "2

"# 2

$

%
&

'

(
) + *

2Q2+
,
-.

/
0
1.
.  (4.36) 

 
The new states we are seeking must still be eigenvectors for this Hamiltonian, and will 
have a quantum number, say, ! , associated with them. From equation (4.32) we can 
write 
 
  E! = ! +1( )!2" ,  (4.37) 
 
or  ! = !a +!b = 0,1,2,… . We would like to find another operator that would share the 
same set of eigenvectors with Ĥ tdho , and therefore commutes with it, to which we could 
attach a new label, say, l . The idea is that specifying !  and l  would completely 
determine the state of the oscillator.  
Consider the following operator (making use of the chain rule) 
 

 

 

M̂ = !i! "
"#

= !i! "Qa

"#
"

"Qa

+
"Qb

"#
"

"Qb

$
%&

'
()

= !i! !Qsin #( ) "
"Qa

+Qcos #( ) "
"Qb

*

+
,

-

.
/

= QaP̂b !QbP̂a ,

 (4.38) 

 
which has the units of a vibrational angular momentum operator. Because of its 
simple form (i.e.,  M̂ = !i!" "# ), it is obvious that this operator commutes with Ĥ tdho  
(as expressed through equation (4.36)). We can therefore write, with !,l  the new 
eigenvectors,  
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Ĥ tdho !,l = ! +1( )!2" !,l

M̂ !,l = l! !,l ,
 (4.39) 

 
where the vibrational angular quantum number l  still needs to be suitable defined. 
However, because of the last of equations (4.39) it is already possible to assess that  
 

 
!" ,l Q,#( ) = Q,# ",l

= F" ,l Q( )eil# ,
 (4.40) 

 
where F! ,l Q( )  is a function of Q  only. If we use the usual definition for the momentum, 
i.e., 
 

 
 
P̂ = !i! "

"Q
,  (4.41) 

 
and further introduce 
 

 
Q± = Qa ±Qb = Qe

± i!

P̂± = P̂a ± P̂b = e
± i! P̂ ± iQ"1M̂( ),  (4.42) 

 
then we can write 
 

 

 

Ĥ tdho =
1
2
P̂2 ! i!Q!1P̂ +Q!2M̂ + !2" 2Q2( )

=
1
2
P̂+P̂! + !2" 2Q+Q!( ).

 (4.43) 

 
In a manner similar to what was done for the non-degenerate case, ladder operators can 
be defined with 
 

 
 

R̂± ±( ) = e ±( )i! P̂ ± i!"Q ±( )iQ#1M̂$% &'
= P̂ ±( ) ± i!"Q ±( )

 (4.44) 

 
where the ±  and ±( )  are respectively correlated on either side of the equality sign. There 
are, therefore, four different ladder operators. It is not too difficult to derive the following 
commutation relations 
 

 

 

Ĥ tdho , R̂
± ±( )!" #$ = ±!2% R̂± ±( )

M̂ , R̂± ±( )!" #$ = ±( )!R̂± ±( ),
 (4.45) 
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which implies that the operators have the following effect on the quantum numbers for 
the energy and the vibrational angular momentum 
 
 R̂± ±( ) : transforms ! "! ±1 and l" l ±( )1.  (4.46) 
 
Using a technique akin to the one used for the one-dimensional harmonic oscillator, it 
also possible to show that 
 

 
! 0,0 Q( ) = "

#
e
$
"Q2

2

!% ,l Q,&( )' R̂+ $( )() *+
%$ l( ) 2

R̂+ +( )() *+
%+ l( ) 2

! 0,0 Q( ),
 (4.47) 

 
with  l = !,! " 2,…,"! . The different states can be coupled by the normal coordinates 
and momenta operators through the ladder operators, as can be asserted using the 
following relations  
 

 
Qa =

1
2
Q+ +Q!( ), Qb =

1
2i

Q+ !Q!( ),

P̂a =
1
2
P̂+ + P̂!( ), P̂b =

1
2i

P̂+ ! P̂!( ),
 (4.48) 

 
and 
 

 

 

Q ±( ) =
1
2i!!

R̂± ±( ) " R̂" ±( )#$ %&

P̂ ±( ) =
1
2
R̂± ±( ) + R̂" ±( )#$ %&.

 (4.49) 

 
For the sake of completeness we will state that in the case of a triply degenerated normal 
mode the wave functions are specified with three quantum numbers !" ,l ,n Q,#,$( )  
( l  and n  are vibrational quantum numbers related to the !  and "  angles, respectively), 
while the energy is given by  
 

 
 
E! = ! +

3
2

"
#$

%
&'
!2( ,  (4.50) 

 
where  ! = 0,1,2,… . Finally, the other two quantum numbers take the values 
 

 
 

l = !,! " 2,! " 4, …,1 or 0
n = "l,"l +1, …,l "1,l.

 (4.51) 
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Figure 4-1 – The energy vibration levels for four molecules. 

Using the results from the analyses performed in this section, it is possible to plot the 
vibrational energy levels for molecules in the harmonic oscillator approximation. A few 
examples are shown in Figure 4-1. Note that the levels are regularly spaced when there is 
only one normal mode (see equation (4.14)), as is the case for CO, but the spectra take a 
much more convoluted appearance when more than one mode are present.  

4.2 Rotational States 
From equation (3.107), we can write the quantum mechanical rigid rotator Hamiltonian to 
be 
 

 
Ĥ rot

0 =
1
2

µ!!
e Ĵ!

2

!
"

= Ae Ĵa
2 + Be Ĵb

2 + Ce Ĵc
2 ,

 (4.52) 

 
where 
 

 Ae =
1
2Iaa

e , Be =
1
2Ibb

e , and Ce =
1
2Icc

e .  (4.53) 

 
The principal axes a, b, and c  (in the equilibrium configuration using the molecular-fixed 
coordinate system) are always defined such that Ae ! Be ! Ce , and whether the molecular 
fixed z-axis  is identified with the a, b, and c  index the situation is usually defined as 
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type I, II, or III. A r  or l  superscript can be added to the type depending if one works 
with a right or left handed coordinate system; we will only consider right handed 
systems.  

4.2.1 Space-fixed Angular Momentum 
We have already discussed the space-fixed angular momentum operators in Chapter 1, as 
well as some of their commutation properties. So, given Ĵ! , Ĵ" , and Ĵ#  we have 
 
 

 
Ĵ j , Ĵk!" #$ = i!% jkl Ĵl ,  (4.54) 

 
with j, k, l = !, ", or # . We also know that Ĵ 2 , the square of the total orbital angular 
momentum, possesses the following commutation relations 
 
 Ĵ 2 , Ĵk!" #$ = 0,  (4.55) 
    
which implies that it will be possible to set up rotational wave functions !rot  that will be 
simultaneous eigenfunctions of Ĵ 2  and Ĵ!  (we could have chosen Ĵ!  or Ĵ!  instead of 

Ĵ! , but it is the convention to chose the latter). We will, for the moment, denote the kets 

associated with these wave functions by J 2 ,m , where  J 2!2  and  m!  are the eigenvalues 

of Ĵ 2  and Ĵ! , respectively.   

We now introduce the operators 
 
 Ĵs

± = Ĵ! ± iĴ" ,  (4.56) 
 
for which the following commutation relations can easily be established 
 
 

 
Ĵ! , Ĵs

±"# $% = ±!Ĵs
± .  (4.57) 

 
Using equation (4.57) we can calculate that 
 

 

 

Ĵ! Ĵs
± J 2 ,m = Ĵs

± Ĵ! ± !Ĵs
±( ) J 2 ,m

= m ±1( )!Ĵs± J 2 ,m ,
 (4.58) 

 
which implies that whenever Ĵs

±  acts on a eigenvector it transforms it to another 
eigenvector of eigenvalue  m ±1( )! . It is therefore apparent that Ĵs

±  are ladders 
operators that will allow us to span the whole set of eigenvectors associated to a given 
eigenvalue  J 2!2 . Moreover, we deduce that m  must have lower and upper bounds, since 
the following relation must be obeyed 
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  m! ! J 2!2 . (4.59) 
 
If we denote the upper and lower bounds of m  as m+  and m! , respectively, then we can 
write 
 
 Ĵs

± J 2 ,m± = 0. (4.60) 
 
Furthermore, we have 
 

 

 

Ĵs
! Ĵs

± J 2 ,m± = Ĵ!
2 + Ĵ"

2 ± i Ĵ! , Ĵ"#$ %&( ) J 2 ,m±

= Ĵ 2 ' Ĵ(
2 ! "J(( ) J 2 ,m±

= J 2 ' m±
2 ! m±( )"2 J 2 ,m±

= 0.

 (4.61) 

 
 From this result we obtain the two equations 
 

 
J 2 ! m!

2 + m! = 0
J 2 ! m+

2 ! m+ = 0,
 (4.62) 

 
from which we can take the difference, and transform it to 
 
 m+ + m!( ) m+ ! m! +1( ) = 0.  (4.63) 
 
The term within the second set of parentheses must be greater than zero because 
m+ ! m" , which implies that the term within the first set of parentheses must cancel and 
 

 
m+ = !m!

m+ ! m! = 2 j,
 (4.64) 

 
where 2 j  has to be some positive integer number, since m+ !m!  corresponds to the 
number of times (i.e., 2 j  times) Ĵm

±  is applied to  J
2,m!  to span the whole set of kets. 

It is now clear from equations (4.62) and (4.64) that m+ = j  and 
 
 J 2 = j j +1( ).  (4.65) 
 
Furthermore, the second of equation (4.64) tell us that m  is quantized and can either be 
integer or half-integer, so that  
 
  m = j, j !1,…,1,0,!1,…,! j  (4.66) 
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or 
 

 
 
m = j, j !1,…, 1

2
,! 1
2
,…,! j.  (4.67) 

 
It can be shown, using equations (3.1), (3.2), and (3.73), that the angular momentum 
operators take the following form in coordinate space 
 

 

 

Ĵ! = "i! cos #( ) " cot $( ) %
%#

+
1

sin $( )
%
%&

'

(
)

*

+
, " sin #( ) %

%$
-
.
/

0/

1
2
/

3/

Ĵ4 = "i! sin #( ) " cot $( ) %
%#

+
1

sin $( )
%
%&

'

(
)

*

+
, + cos #( ) %

%$
-
.
/

0/

1
2
/

3/

Ĵ5 = "i! %
%#

Ĵs
± = "i!e± i# " cot $( ) %

%#
+

1
sin $( )

%
%&

±
%
%$

'

(
)

*

+
,

Ĵ 2 = "!2
1

sin $( )
%
%$

sin $( ) %
%$

'
()

*
+,
+

1
sin2 $( )

%2

%# 2
+

%2

%& 2 " 2cos $( ) %2

%#%&
'

(
)

*

+
,

-
.
0/

1
2
3/
.

 (4.68) 

4.2.2 Molecule-fixed Angular Momentum  
Since the rotation Hamiltonian of equation (4.52) is expressed using the molecule-fixed 
coordinates x, y and z , it is also important to derive the commutation relations for the 
angular momentum operators expressed in this coordinate system. Furthermore, the wave 
functions associated with the Hamiltonian are a function of the three Euler angles; we 
will then require one more operator besides Ĵ 2  and Ĵ!  (which commutes with Ĵ 2 ) to 
completely specify the state of rotation of the molecule. Because we know from 
equations (4.68) that Ĵ 2  depends on all three angles, while Ĵ!  is a function of only ! , 
we will benefit from using an operator with the simplest dependency, i.e., either on !  or 
! . We will, therefore, make the educated guess that a good operator for this task is Ĵz , 
as will be justified by our analysis. 
Because the molecule-fixed components of the angular momentum operators can be 
expressed as a linear combination of the space-fixed components through the Euler 
matrix (see equations (3.1) and (3.2)), it is straightforward to show, from equation (4.55), 
that  
 
 Ĵ 2 , Ĵk!" #$ = 0,  (4.69) 
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with k = x, y, or z . On the other hand, careful use of the same transformation relations 
between the molecule- and space-fixed angular momentum components will yield the 
following commutation relations 
 
 

 
Ĵ j , Ĵk!" #$ = %i!& jkl Ĵl ,  (4.70) 

 
where j, k, l = x, y, or z . Take notice of the sign difference on the right hand side of 
equations (4.54) and (4.70). 
Just as was previously done for the space-fixed operators we introduce the ladder 
operators 
 
 Ĵm

± = Ĵx ± iĴy ,  (4.71) 
 
for which the following commutation relations can easily be established 
 
 

 
Ĵz , Ĵm

±!" #$ = !"Ĵm
± . (4.72) 

 
Again, take note of the sign difference relative to equation (4.57). Going through the 
same process that was used for the space-fixed operators we find that we can add a new 
quantum number k  to define the eigenvectors such that 
 
  Ĵz J,k,m = k! J,k,m ,  (4.73) 
 
where we have also replaced J 2  by J  in the ket to specify the eigenvalue of Ĵ 2  (that of 
Ĵ! , i.e., m , is unchanged). Also, because of the sign difference of equations (4.70) and 
(4.72) we find that the roles of the ladder operators are inverted. That is, we now have 
 
  Ĵz Ĵm

± J,k,m = k !1( )"Ĵm± J,k,m . (4.74) 
 
Note that k  covers the same range of values as m  does (see equations (4.66) and (4.67), 
with j! J ). It can be shown, using equations (3.73), that the angular momenta operators 
take the following form in coordinate space  
  

 

 

Ĵx = !i! cos "( ) cot #( ) $
$"

!
1

sin #( )
$
$%

&

'
(

)

*
+ + sin "( ) $

$#
,
-
.

/.

0
1
.

2.

Ĵy = i! sin "( ) cot #( ) $
$"

!
1

sin #( )
$
$%

&

'
(

)

*
+ ! cos "( ) $

$#
,
-
.

/.

0
1
.

2.

Ĵz = !i!
$
$"
,

 (4.75) 
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and 
 

 

 

Ĵm
± = i!e" i! " cot #( ) $

$%
+

1
sin #( )

$
$!
"

$
$#

&

'
(

)

*
+

Ĵ 2 = "!2
1

sin #( )
$
$#

sin #( ) $
$#

&
'(

)
*+
+

1
sin2 #( )

$2

$! 2
+

$2

$% 2 " 2cos #( ) $2

$!$%
&

'
(

)

*
+

,
-
./

0
1
2/
.
 (4.76) 

 
Finally, we write down the matrix elements for some of the angular momentum operators 
(space- and molecular-fixed) 
 

 

 

J,k,m Ĵ 2 J,k,m = J J +1( )!2

J,k,m Ĵz J,k,m = k!

J,k "1,m Ĵm
± J,k,m = ! J J +1( ) ! k k "1( )

J,k,m Ĵ" J,k,m = m!

J,k,m ±1 Ĵs
± J,k,m = ! J J +1( ) ! m m ±1( ).

 (4.77) 

4.2.3 The Eigenfunctions of the Angular Momentum Operators 
We will define the eigenfunctions of the angular momentum operators in coordinate 
space with 
 

 
!rot ",#,$( ) = ",#,$ J,k,m

= %Jkm "( )!m #( )&k $( ),
 (4.78) 

 
where the last equation indicates that we are expecting to obtain a solution through a 
separation of the variables. As a first step, we note that applying Ĵ!  and Ĵz  (see the third 
of equations (4.68) and (4.75)) to equation (4.78) will simply yield 
 

 

 

!i! "
"#

$m #( ) = m!$m #( )

!i! "
"%

&k %( ) = k!&k %( ),
 (4.79) 

 
with the results that (including normalization) 
 

 !m "( ) = 1
2#

eim" , $k %( ) = 1
2#

eik% .  (4.80) 
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With these equations, and the application of Ĵ 2  to the eigenfunctions using the last of 
equations (4.76) we get 
 

!
1

sin "( )
#
#"

sin "( ) #
#"

$
%&

'
()
!

m2 + k2 ! 2mk cos "( )$% '(
sin2 "( )

*
+
,

-,

.
/
,

0,
1Jkm "( ) = J J +1( )1Jkm "( ). (4.81) 

 
We could attempt to solve this equation as it stands, but it is simpler to first solve it for 
k = m = 0  and then apply Ĵ!  and Ĵz  to find the more general expressions for arbitrary 
values of k  and m . Therefore, setting x = cos !( )  and k = m = 0  in equation (4.81) we 
are left with the so-called Legendre equation 
 

 1! x2( ) d
2

dx2
! 2x d

dx
+ J J +1( )"

#
$

%

&
'(J 0 0 x( ) = 0,  (4.82) 

 
for which the Legendre polynomials PJ x( )  are the solution. In our case we have 
 

 !J 0 0 cos "( )#$ %& = J + 1
2
PJ cos "( )#$ %&.  (4.83) 

 
For example, here are the first four Legendre polynomials 
 

 

P0 cos !( )"# $% = 1

P1 cos !( )"# $% = cos !( )

P2 cos !( )"# $% =
1
2
3cos2 !( ) &1"# $%

P3 cos !( )"# $% =
1
2
5cos3 !( ) & 3cos !( )"# $%.

 (4.84) 

 
The successive application of Ĵ!  and Ĵz  yields 
 

 

J,k,m = !N+ Ĵm
"( )k Ĵs

+( )m J,0,0

J,"k,"m = !N" Ĵm
+( )k Ĵs

"( )m J,0,0

J,k,"m = !!N+ Ĵm
"( )k Ĵs

"( )m J,0,0

J,"k,m = !!N" Ĵm
+( )k Ĵs

+( )m J,0,0 ,

 (4.85) 

 
where !N±  and !!N±  are some positive normalization constants. Through the projection of 
these kets on !,",#  it is found that the explicit form of the wave functions is given by 
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!rot ",#,$( ) = %Jkm "( )!m #( )&k $( )

= N '1( )( cos " 2( ))* +,
2J + k'm'2(

' sin " 2( ))* +,
m' k+2(

( ! J ' m ' (( )! m ' k +(( )! J + k ' (( )!(
-

.
/
0

10

2
3
0

40
eim#eik$ ,

 (4.86) 

 
with 
 

 N =
1

2 2!
J + m( )! J " m( )! J + k( )! J " k( )! 2J +1( ).  (4.87) 

 
In equation (4.86) the range of values for the summation index !  starts from the larger 
of 0 and k ! m( ) , and ends at the smaller of J ! m( )  and J + k( ) . Alternatively, these 

wave functions are often expressed using the so-called rotation matrices Dmk
J( ) !,",#( )  

with 
 

 !rot ",#,$( ) = 2J +1
8% 2 Dmk

J( ) ",#,$( )&' ()
*
. (4.88) 

4.2.4 Solutions to the Rigid Rotator Hamiltonian  
We shouldn’t lose sight of our goal, which is to find the eigenvalues and eigenfunctions 
of the rigid rotator Hamiltonian of equation (4.52). That is, we want to solve  
 
 Ĥ rot

0 ! rot = Erot ! rot .  (4.89) 
 
As we already know, Ĥ rot

0  commutes with Ĵ 2  and Ĵ! , which implies that we will be able 

to build the eigenvectors ! rot  using the set of J,k,m  kets as a basis. In fact, in some 
cases we will find that ! rot = J,k,m . This will not be true in general, however, since 

Ĥ rot
0  does not always commute with Ĵz . It follows from this that the matrix representing 

Ĥ rot
0  will always be diagonal in J , but not necessarily in k . A given energy of rotation 

will generally be associated with a level J , and a corresponding wave function 
expressible as follows (with ck

J ,m  some coefficients) 
 
 ! rot = ck

J ,m J,k,m
k
" .  (4.90) 

   
It is convenient to separate this problem in different classes, which depend on the relative 
values of the principal moments of inertia (see equations (4.52) and (4.53), and the 
discussion that follows). The following types of rotators are therefore defined 
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1. Spherical tops Iaa
e = Ibb

e = Icc
e CH4

2. Symmetric tops, a) prolate Iaa
e < Ibb

e = Icc
e CH3D

b) oblate Iaa
e = Ibb

e < Icc
e H3

+, NH3

3. Linear molecules Iaa
e = 0, Ibb

e = Icc
e CO, HCN

4. Asymmetric tops Iaa
e < Ibb

e < Icc
e H2O

 

4.2.4.1 Spherical Top Molecules 
Since the principal moments of inertia are all equal for a spherical top, then Ae = Be = Ce  
and the Schrödinger equation becomes 
 
 Be Ĵ

2 ! rot = Erot ! rot ,  (4.91) 
 
with  
 
  Erot = BeJ J +1( )!2 .  (4.92) 
 
It should also be clear that  
 
 ! rot = J,k,m .  (4.93) 
 
That is, the wave functions are the eigenfunctions of Ĵ 2  (as well as those of Ĵ!  and Ĵz ). 

4.2.4.2 Symmetric Top Molecules 
For a prolate symmetric top molecule the rigid rotor Schrödinger equation is 
 
 Ae Ĵa

2 + Be Ĵb
2 + Ĵc

2( )!
"

#
$ % rot = Erot % rot . (4.94) 

 
If we choose to work with a type Ir  rotor, then we identify the a, b, and c  indices with 
z, x, and y , respectively, and equation (4.94) transforms to 
 
 Be Ĵ

2 + Ae ! Be( ) Ĵz2"# $% & rot = Erot & rot ,  (4.95) 
 
remember that Ae ! Be  always. It is easy to see with this last form for the Schrödinger 
equation that the Hamiltonian is completely defined by Ĵ 2  and Ĵz . It therefore commutes 
with both of these operators, and shares their eigenfunctions. That is, 
 
 ! rot = J,k,m ,  (4.96) 
 
and the energy is 
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  Erot = BeJ J +1( ) + Ae ! Be( )K 2"# $%!
2 ,  (4.97) 

 
with  J = 0, 1, 2,… , K = k , and  k = 0, ±1, ± 2,…, J .   

In a similar manner, it can be shown that for an oblate symmetric top molecule the 
Schrödinger equation is 
 
 Be Ĵ

2 ! Be ! Ce( ) Ĵz2"# $% J,k,m = Erot J,k,m ,  (4.98) 
 
with ! rot = J,k,m  for a type IIIr  rotator (i.e., we identified the a, b, and c  indices 
with x, y, and z ) the energy is 
 
  Erot = BeJ J +1( ) ! Be ! Ce( )K 2"# $%!

2 .  (4.99) 
 
Unlike the case of the spherical top, the energy or rotation of a symmetric top is 
dependent on K ; it increases with K  for a prolate molecule, while it decreases with K  
for an oblate molecule. 

4.2.4.3 Linear Molecules 
Although linear molecules constitute, in a way, the simplest type of rigid rotator, there 
are some aspects associated with their Hamiltonian that require special attention when 
analyzing their rotational spectroscopy (Bunker and Jensen (1998) dedicates one full 
chapter to the subject). We will not deal with these details and simply treat these 
molecules as the extreme case of a prolate symmetrical top molecule (it turns out that this 
treatment is perfectly adequate). With this approximation, equations (4.95) and (4.97) 
become (setting Ae = 0  is adequate, as there cannot be any energy of rotation about the 
corresponding axis) 
 
 Be Ĵ

2 ! Ĵz
2( ) J,k,m = Erot J,k,m ,  (4.100) 

 
and 
 
  Erot = Be J J +1( ) ! K 2"# $%!

2 .  (4.101) 
 
But the question remains as to what value(s) can K  take? This question is certainly 
relevant since there can be no nuclear rotational contribution to the orbital angular 
momentum about the z-axis . Some authors will therefore set K = 0  (e.g., Kroto, op.cit.), 
but our analysis will be more accurate if we take into account other sources of orbital 
angular momentum about the axis of symmetry.   
It can be shown that linear molecules composed of N  atoms (and therefore having 
3N ! 5  vibrational degrees of freedom) have N !1  one-dimensional stretching normal 
modes, and N ! 2  two-dimensional bending normal modes. Such bending modes can be 
treated as was shown in Section 4.1.2, where the vibrational angular momentum operator 
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and quantum number were introduced (see the second of equations (4.39)). Each mode 
will contribute to the total vibrational angular momentum  l!  about the symmetry axis 
according to 
 

 
 
l! = lk!

k=1

N !2

" ,  (4.102) 

 
where  lk!  is the vibrational angular momentum associated with the kth  two-dimensional 
bending mode. Furthermore, the total electronic angular momentum about the symmetry 
axis L̂z  can also be shown to commute with the electronic Hamiltonian Ĥ elec  for a linear 
molecule, with the result that 
 
 L̂z !elec = " !elec ,  (4.103) 
 
where !elec  an eigenvector of Ĥ elec . The total orbital angular momentum about the 
z-axis  is therefore l + ! , and it follows that the quantum number K , as well as k , is 
restricted by this value. That is, 
 
 k = l + !. (4.104) 

4.2.4.4 Asymmetric Top Molecules  
The asymmetric top rotator Hamiltonian can be written 
 

 
Ĥ rot

0 = ax Ĵx
2 + byĴy

2 + cz Ĵz
2

=
1
2
ax + by( ) Ĵx2 + Ĵy2( ) + cz Ĵz2 + 12 ax ! by( ) Ĵx2 ! Ĵy2( ),  (4.105) 

 
where the set ax ,by ,cz{ }  takes on some arrangement of Ae , Be , and Ce . For example, if 

we choose the Ir  type, then ax = Be , by = Ce , and cz = Ae . Equation (4.105) can be 
advantageously transformed to 
 

 Ĥ rot
0 = ! Ĵ 2 + " Ĵz

2 + # Ĵm
+( )2 + Ĵm

$( )2%
&'

(
)*
,  (4.106) 

 
with 
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! =
1
2
ax + by( )

" = cz #
1
2
ax + by( )

$ =
1
4
ax # by( ).

 (4.107) 

 
A comparison with equations (4.95) and (4.98) for the Hamiltonians of the symmetric 
tops makes it clear that the !  term destroys any potential symmetric top appearance in 
equation (4.106). It is obvious from the presence of Ĵm

±  in equation (4.106) that (unlike 
the cases of the symmetric tops, spherical tops, and linear molecules) Ĥ rot

0  will not 
commute with Ĵz . The kets J,k,m  will therefore not be the eigenvectors for the 
asymmetric top Hamiltonian. However, since we will want to diagonalize the 
Hamiltonian using suitable linear combinations of these same kets (i.e., J,k,m ), we 
would do well to set up the problem so as to minimize ! , or rather its ratio to !  or " , as 
this will reduce the amount of mixing between kets of different k  values. To do so, one 
would go through the different choices available (i.e., the six types  I

r , Il , …, IIIr , IIIl ) to 
find the optimum axes configuration.  
Using the first three of equations (4.77), it is easy to show that the non-vanishing 
elements of the Hamiltonian of equation (4.106) result from 
 

 

J,k,m Ĵ 2 J,k,m = J J +1( )!2

J,k,m Ĵz
2 J,k,m = k2!2

J,k " 2,m Ĵm
±( )2 J,k,m = !2 J J +1( ) ! k "1( ) k " 2( )"# $% J J +1( ) ! k k "1( )"# $%,

 (4.108) 

 
where the quantum number k  is associated to the chosen axes convention. For example, 
for the type Ir  ( IIIr )  k!  is the angular momentum about the a-axis  ( c-axis ), and is 
therefore often written ka  ( kc ). It is apparent from equations (4.108) that there are no 
non-vanishing elements between kets exhibiting different values of J  and m , and the 
Hamiltonian matrix will therefore be “block-diagonal” in appearance (each block of 
dimension 2J +1), as shown in Figure 4-2. Moreover, only states having the same k  
values or k  values differing by two can mix. This implies even and odd values of k  will 
not combine. 
 
Example 
To make things clearer, let’s work out the energies and eigenvectors for an asymmetric 
top molecule using a type Ir  convention for the J = 0, 1 and 2  states. 
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Figure 4-2 – The block-diagonal appearance of (part of) the asymmetric rotator 
Hamiltonian matrix. 

Solution 
First, we note that in the absence of an external field (electric of magnetic) the quantum 
number m  does not affect the energy; we will therefore omit it and write J,k  for the 
symmetric top eigenvectors. Second, for this type of rotator the expression for the 
Hamiltonian is that spelled out in equation (4.106), i.e.,  
 

 Ĥ rot
0 = ! Ĵ 2 + " Ĵz

2 + # Ĵm
+( )2 + Ĵm

$( )2%
&'

(
)*
,  (4.109) 

 
with  
 

 

! =
1
2
Be + Ce( )

" = Ae #
1
2
Be + Ce( )

$ =
1
4
Be # Ce( ).

 (4.110) 

 
For J = 0 , the corresponding block of the Hamiltonian matrix consists of a single 
element involving only the 0,0  ket, which is therefore the eigenvector for this state. 
From equations (4.108)-(4.110) we find that Erot J = 0( ) = 0 .   

For J = 1, the block is a 3! 3  block involving the 1,!1 , 1,0 , and 1,1  kets. Because 
of the aforementioned fact that kets with even and odd values of k  do not mix, we need 
only build linear combinations of kets with like parity. We will denote in general (i.e., for 
any value of J ) the even combinations by J,Ka ,E

+  and J,Ka ,E
! , where E  stands 
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for “even” and +  (! ) indicates that the corresponding ket stems from the addition 
(subtraction) of two kets. Likewise, we will denote by J,Ka ,O

+  and J,Ka ,O
!  the 

combinations of  “odd” kets. It should be clear from this and equation (4.109) that 
 
 J,Ka ,A

+ Ĥ rot
0 J,Ka ,A

! = 0,  (4.111) 

 
with A = E  or O . Correspondingly, we write 
 

 
1,1,O+ =

1
2
1,1 + 1,!1( )

1,1,O! =
1
2
1,1 ! 1,!1( ),

 (4.112) 

and 
 
 1,0,E+ = 1,0 .  (4.113) 
 
It can be verified with equations (4.108) that these kets have no off-diagonal elements 
between them. The diagonal elements therefore correspond to eigenvalues of the 
Hamiltonian with 
 

 

Erot 1,O
+( ) = 1,1,O+ Ĥ rot

0 1,1,O+

=
1
2
1,1 Ĥ rot

0 1,1 + 1,!1 Ĥ rot
0 1,!1 + 1,1 Ĥ rot

0 1,!1 + 1,!1 Ĥ rot
0 1,1( )

=
!2

2
Ae +

1
2
Be + Ce( )"

#$
%
&'
+ Ae +

1
2
Be + Ce( )"

#$
%
&'

(
)
*

+
1
2
Be ! Ce( )"

#$
%
&'
+
1
2
Be ! Ce( )"

#$
%
&'
+
,
-

= !2 Ae + Be( ),

 (4.114) 

  
and similarly 
 

 
 

Erot 1,O
!( ) = !2 Ae + Ce( )

Erot 1,E
+( ) = !2 Be + Ce( ).

 (4.115) 

 
For J = 2  the needed basis functions are 
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2,2,E+ =
1
2
2,2 + 2,!2( )

2,2,E! =
1
2
2,2 ! 2,!2( )

2,1,O+ =
1
2
2,1 + 2,!1( )

2,1,O! =
1
2
2,1 ! 2,!1( )

2,0,E+ = 2,0 .

 (4.116) 

 
The only non-vanishing off diagonal elements for the Hamiltonian is between 2,2,E+  

and 2,0,E+ , as shown here 
 

 

 

2,0,E+ 2,2,E+

2,0,E+ 3 Be + Ce( )!2 3 Be ! Ce( )!2
2,2,E+ 3 Be ! Ce( )!2 4Ae + Be + Ce( )!2

 

 
This sub-matrix can be diagonalized using equation (1.90), (1.91), (1.95), and (1.96) to 
yield for the eigenvalues 
 

 
 

Erot
! 2,E+( ) = !2 3 Be + Ce( ) ! S"# $%

Erot
+ 2,E+( ) = !2 4Ae + Be + Ce + S( ),

 (4.117) 

 
with 
 

 S = 3 Be ! Ce( )2 + 4 Ae ! Be + Ce( ) 2"# $%
2
! 2 Ae ! Be + Ce( ) 2"# $%,  (4.118) 

  
and the eigenvectors 
 

 
! rot

" 2,E+( ) = c+ 2,0,E+ " c" 2,2,E+

! rot
+ 2,E+( ) = c+ 2,2,E+ + c" 2,0,E+ ,

 (4.119) 

 
where 
 

 c± = 1
2
1±

2Ae ! Be ! Ce( )
3 Be ! Ce( )2 + 2Ae ! Be ! Ce( )2

"

#

$
$

%

&

'
'

1 2

. (4.120) 
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The energies corresponding to the three other eigenvectors are 
 

 

 

Erot 2,E
!( ) = !2 4Ae + Be + Ce( )

Erot 2,O
+( ) = !2 Ae + 4Be + Ce( )

Erot 2,O
!( ) = !2 Ae + Be + 4Ce( ).

 (4.121) 

 
The same procedure can be repeated for a type IIIr  asymmetric rotator configuration 
where the Hamiltonian is 
 

 Ĥ rot
0 = ! Ĵ 2 + " Ĵz

2 + # Ĵm
+( )2 + Ĵm

$( )2%
&'

(
)*
,  (4.122) 

 
with 

 

! =
1
2
Ae + Be( )

" = Ce #
1
2
Ae + Be( )

$ =
1
4
Ae # Be( ).

 (4.123) 

 
We would then find the same form for the eigenvectors (expressed using J,kc ,m  
instead of J,ka ,m ) and energies, but with the following substitutions  
 

 
Ae ! Ce

Be ! Ae
Ce ! Be .

 (4.124) 

 
For a given molecule, it is instructive to consider the two limits, i.e., the prolate and 
oblate cases. This is done as follows. For the solution of type Ir  we let Be  take the value 
of Ce  and calculate the energy levels Erot J,Ka( )  for each eigenvector J,ka . For the 
type IIIr  solution, we calculate the Erot J,Kc( )  corresponding to J,kc  by letting Be  
take the value of Ae . Usually, these energy levels are plotted together on a single graph, 
as the prolate and oblate limits, as a function of the degree of asymmetry defined by 
 

 ! =
2Be " Ae " Ce

Ae " Ce

. (4.125) 
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Figure 4-3 – The correlation of the J = 0, 1, and 2  energy levels of the water molecule. 
This molecule is an asymmetric rotator of degree ! = "0.42 ; it is therefore more prolate 
than oblate in nature. The value of Be  (= 14.6 cm!1 ) was changed from being equal to 
Ce  (= 9.5 cm!1 ) in the prolate case (! = "1), and to being equal to Ae  (= 27.2 cm!1) in 
the oblate case (! = 1). 
The prolate limit corresponds to ! = "1 , while the oblate limit has ! = 1. The actual 
asymmetric top molecule will have a value of !  located somewhere between these two 
extremes. An example corresponding to the case of the water molecule (! = "0.42 ) is 
shown in Figure 4-3.  
For symmetric top molecules the energy levels can be completely determined and labeled 
with J,Ka( )  or J,Kc( ) , depending on the case, and these quantum numbers are therefore 
called good quantum numbers. Obviously, this is not the case for an asymmetric top 
molecule. Despite of this fact, it is still useful to use these numbers to label energy levels. 
The 2J +1( )  energy levels corresponding to some value J  are therefore denoted by 
JKaKc

, where the Ka  and Kc  indices indicate the values of K  that correspond, 
respectively, to the prolate and oblate limiting levels to which they correlate. These levels 
are called “ee”, “eo”, “oe”, or “oo” depending on whether Ka  and Kc  are even or odd.  

Finally, possible rotational energy levels for molecules of the different types (i.e., 
spherical top, symmetrical top, linear, and asymmetric top molecules) are shown in 
Figure 4-4. 
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Figure 4-4 - Rotational energy levels for molecules of the different types (i.e., spherical 
top (CH4 ), symmetric top (CH3D ), linear (CO), and asymmetric top (H2O ) molecules).  


