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Chapter 5. Molecular Spectroscopy: Basic Physics 
Notes: 
• Most of the material presented in this chapter is taken from Stahler and Palla (2004), 

Chap. 5. 

5.1 Interstellar Molecules 
The first thing that needs to be explained when considering the existence of interstellar 
molecules is the fact that they are there at all. Indeed, the presence of ultraviolet photons 
in the interstellar radiation field would lead us to believe that any molecules previously 
created would be destroyed by these high-energy photons. In the present day Universe, 
the solution to this problem resides in the fact that wherever we find molecular gas, we 
also find interstellar dust. We know that dust grains are extremely efficient in absorbing 
radiation at optical and ultraviolet wavelengths, and, therefore, provide the amount of 
shielding necessary to protect molecules against harmful radiation.  

Another problem consists in explaining how atoms can combine to form both simple and 
more complicated molecules. One might assume that normal neutral-neutral interaction in 
the gas phase of the interstellar medium would suffice to explain the current observations 
of the many different molecular species detected so far (well over 100) in the dense and 
cold parts of molecular clouds. As it turns out, there are a few reasons that render this 
hypothesis unlikely. First, it is often the case that an energetic activation barrier needs 
to be conquered before a neutral-neutral chemical reaction can take place. Since the 
corresponding energy level is on the order of 

 
!E k

B
! 100 K , this type of reaction is 

unlikely to take place in such regions of molecular clouds.  

Another problem arises from the fact that most chemical reactions are exothermic, i.e., 
they liberate energy upon the creation of a molecule. This characteristic, combined with 
the requirement that energy and momentum be conserved during a chemical reaction, 
makes it impossible for a two-body interaction to take place. Technically, there is still the 
possibility that the molecule resulting from a two-body interaction would be initially in 
an excited state and subsequently emit a photon, which would make possible such a 
chemical reaction while ensuring that the aforementioned conservation laws are met. This 
process know as radiative association is, however, very unlikely to take place in 
molecular clouds. It appears that the only way out for the existence of this kind of 
reaction resides with the presence of a third body, which would then easily ensure the 
conservation of momentum and energy. But such three-body interactions (between three 
hydrogen atoms, for example) would require much higher densities than encountered in 
the dense and cold parts of molecular clouds. We must, therefore, also discard this 
possibility as the main pathway for molecule production (although we will see later that 
we cannot completely neglect them).  

We now consider another factor that enters the equation when one calculates the rate at 
which any chemical reaction, of any kind, between two particles can take place. Although 
we have just dismissed the possibility of neutral-neutral reactions as a viable explanation 
for the existence of the many molecular species detected in dense molecular clouds, we 
do this calculation for comparison purposes at a later time. Let us take, for example, two 
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neutral species A and B that coexist in some region of a cloud with respective densities 
n
A

 and n
B

. Let us now calculate the collision rate of a given particle B collides with 
another A such that the following reaction could, in principle, take place 
 
 A + B! C,  (5.1) 
 
where C is the molecule that results from this interaction. If !  is the scattering cross-
section characterizing the collision, then the volume covered or traveled by the particle B 
as seen by A per unit time is v

r
! , where v

r
 is the relative velocity between the two. It 

follows that the probability that the particle B meets any particle A is 
 
 !

c
= n

A
v
r
" ,  (5.2) 

 
which is, in effect, the collision rate for this type of encounter. If we assume equipartition 
of energy, the relative velocity between two particles in a gas of temperature T  is 
approximately  
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,  (5.3) 

 
where µ  is the reduced mass for the two particles considered. For a typical molecular 
cloud with T = 10 K , the relative velocity is on the order of 0.1 km/s. Also, the cross-
section !  for neutral atoms or molecules collisions is approximately 10

!15
 cm

!2 . We, 
therefore, find from equation (5.2) that the collision rate is 
 
 !

c
" 10

#11
n

A
 s

#1
,  (5.4) 

   
and n

c
 the total number of collisions per unit volume and unit time is 

 
 n

c
! 10

"11
n
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n

B
 cm

"3
s
"1

. (5.5) 
 
Furthermore, if the reaction rate coefficient is denoted by k  (in cm3

s
!1 ), then the 

average number of reactions taking place per unit time is 
 
 N

r
= k n

A
n

B
 s

!1
.  (5.6) 

 
Comparison with equation (5.2) reveals that the reaction rate coefficient already 
incorporates the collision rate within it. We note for the moment that the value obtained 
in equation (5.4) for the collision rate leading to neutral-neutral reactions is a function of 
the relative velocity between the two particles involved. One could always postulate that, 
for some reason, the relative velocity is increased by a large factor (e.g., an order of 
magnitude or two), if this were needed to explain observations. A problem with this 
scenario is that it would be very hard for two particles colliding at such high speeds to 
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“stick” together and enter into a chemical reaction. They would most likely bounce off 
each other instead.   

It was eventually discovered that the way out of the problem of accounting for the 
observed population of molecular species in dense molecular clouds is to involve charged 
atoms or molecules in chemical reactions. These are called ion-molecule reactions. This 
is due to the fact that when an ion approaches a neutral particle it will induce an electric 
dipole moment into that neutral entity that will greatly increase the scattering cross-
section. More precisely, it can be shown that   
 
 ! " v

r

#1
,  (5.7) 

 
and that the mean collision rate of any ion A+  with a neutral B leading to a potential 
reaction of the type 
 
 A

+
+ B! C

+
+ D  (5.8) 

 
is 
 
 !

c
= n

A
v
r
" .  (5.9) 

 
The difference with a neutral-neutral collision is quantified by the fact that 
 
 v

r
! " 10

#9
 cm

3
s
#1

,  (5.10) 
 
which is the equivalent of a neutral-neutral collision with a relative velocity of 10 km/s 
(see equation (5.4))! For similar volume densities as for a neutral-neutral interaction, the 
collision rates are increased by two orders of magnitudes. Furthermore, ion-molecule 
reactions do not involve any activation barrier, in general. These facts are sufficient to 
account for the molecular abundances measured in molecular clouds, at least generally 
speaking.  

We should note that a certain level of ionization, if very low (i.e., 10!6  to 10!9 ), is 
always expected to be present in molecular clouds, even in cases where there are no 
stellar or interstellar radiation fields in the vicinity. This is because of the omnipresence 
of cosmic rays that can penetrate deep into molecular clouds to bring about some level of 
ionization. 

Perhaps the most fundamental ion-molecule reaction is 
 
 H

2
+ H

2

+
! H

3

+
+ H. (5.11) 

 
The importance of this reaction stems from the high chemical reactivity of the H

3

+  ion 
and its ensuing role for the formation of many other molecules. For example, we can 
show how the combination of this reactivity with the existence of atomic carbon and 
oxygen, which are produced abundantly in stellar interiors and injected in the interstellar 
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medium at the end of their lives, leads to the formation of carbon monoxide (CO). More 
precisely, we have  
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3
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 (5.12) 

 
for part of the so-called carbon chemistry, and a similar network 
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 (5.13) 

 
for the oxygen chemistry. Combining the last reaction of these networks with O and C, 
respectively, yields the formation of the very important HCO+  molecular ion  
  

 
O + CH
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+
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+
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.
 (5.14) 

 
Finally, since most of the resulting ions will be destructed through dissociative 
recombination with an electron e!  we get 
 
 HCO

+
+ e

!
" CO + H.  (5.15) 

 
Carbon monoxide is very stable molecule (it has a triple-bond between the two atom) and 
is the second most abundant molecule after molecular hydrogen. 

Evidently our main reaction given in equation (5.11) assumes the presence of molecular 
hydrogen. As it turns out, this is not a trivial assumption. This is because the chemical 
reaction involving two hydrogen atoms to form a hydrogen molecule is exothermic (see 
above). As was mentioned earlier, because of the need for conservations of energy and 
momentum in the process of creating the molecule the energy released in the creation of 
the molecule must be transmitted to a third body. A solution to this problem can be found 
if one considers the role played by dust grains for the formation of molecules, especially 
H
2
.    

Because a hydrogen atom has an unpaired electron it will easily stick (through the weak 
Van der Walls force) to the surface of a grain after a collision with it. It will then 
quantum tunnel through the surface of the grain until it reaches a lattice defect where the 
binding energy is high enough to trap it in place. Evidently, the probability that two 
atoms meet at the location of such a defect on the surface of grain and form a molecule 
can be relatively high if enough atoms collide with the dust grain. It is, in fact, believed 
that two atoms will quickly find each other in such a way at the surface of a grain. If the 
collision rate of a grain with hydrogen atoms is given by (see equation (5.2)) 
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where !

d
= "a

d

2  is the cross-section of a (spherical) dust grain and n
H

 the density of 
atomic hydrogen. Then the rate of H

2
 formation is given by 
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 (5.17) 

 
where 

 
!
H
! 0.3  is the sticking probability of a hydrogen atom to the surface of the grain. 

The factor or 1 2  in equation (5.17) is due to the fact that two atoms are needed to create 
one molecule. Once the molecule has formed the energy release in the process is easily 
absorbed by the dust grain, which is much more massive than the atoms, and the 
molecule is ejected from the surface of the grain. Moreover, since they ejected hydrogen 
molecules do not have any unpaired electron (unlike the hydrogen atom) they will not 
exhibit the tendency to easily stick to a dust grain when colliding at a later time. Dust 
grains are thus essential for the formation of the most abundant molecule in molecular 
clouds, and allow for the creation of the H

3

+  molecule (through the reaction given in 
equation (5.11)) that is so important for the chemistry and the formation of many other 
molecules. 

5.2  Molecular Spectroscopy 
Molecules being composed of nuclei and electrons along with their interwoven 
interactions are, needless to say, impossible systems to completely solve analytically. It 
follows that a series of approximations are usually applied when trying to explore their 
spectroscopy.  

We start with the classical molecular Hamiltonian, which is the sum of the kinetic and 
potential energies 
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 (5.18) 

 
where, for the r th  particle, m

r
 is the mass, the position is specified by X

r
,Y

r
, and Z

r
 and 

measured from some arbitrary space-fixed coordinate system, C
r
e  is the charge, and R

rs
  

 

 R
rs
= X

r
! X

s( )
2
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r
! Y

s( )
2

+ Z
r
! Z

s( )
2  (5.19) 
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is the distance to particle s . The kinetic energy can be decomposed into two components: 
one (T

CM
) due to the motion of the centre of mass of the system, and another (T

rve
) 

arising from the motions of the nuclei and electrons relative to the centre of mass. To 
separate these two terms, we express X

r
,Y

r
, and Z

r
 the position components of the r th  

particle relative to the centre of mass located at X
0
,Y

0
, and Z

0
 such that 
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0
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 (5.20) 

 
Once the ensuing calculations are performed we find the following for the Hamiltonian 
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 (5.21) 

 
The index “rve” stands for rovibronic (rotation-vibration-electronic), and is associated 
with the internal kinetic energy of the molecule, as opposed to the external or 
translational kinetic energy. The rovibronic Hamiltonian is the quantity that we need to 
consider to determine the spectroscopy of a molecule. 

To convert the classical rovibronic Hamiltonian H
rve

 into the needed quantum 
mechanical version of the Hamiltonian, we must first express equation (5.21) as a 
function of the coordinates X

r
,Y

r
, and Z

r
 and momenta P

X
r

,P
Y
r

, and P
Z
r

. We could then 
replace these quantities with the corresponding quantum mechanical operators and obtain 
an expression for the quantum mechanical Hamiltonian. To accomplish our first 
aforementioned task, we make use of the Lagrangian definition for the momenta, i.e., 
 

 
 

P
X
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!L

rve

! !X
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,…,  (5.22) 

 
where L

rve
! T

rve
"V  is the (rovibronic) Lagrangian. In this case, since the potential 

energy is not a function of the velocities, then equation (5.22) simplifies to 
 

 
 

P
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,  (5.23) 

 
and so on. The equation resulting from this is 
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with 
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,  (5.25) 

 
as a representation in the usual coordinate space. 

5.2.1 The Fine Structure and Hyperfine Structure Hamiltonians 
The rovibronic Hamiltonian of equation (5.24) does not take into account some 
interactions due to the intrinsic magnetic moment (i.e., spin) of the electrons, and the 
intrinsic magnetic and electric moments of the nuclei. More precisely, if we only consider 
the individual electron spins ŝ

i
, and the so-called electron spin-spin and spin-orbit 

couplings, then the electron fine structure Hamiltonian Ĥ
es

 must be introduced 
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/ ŝi

2 ,i
1

+
e

m
e
c

"

#$
%

&'

2

1

Rij
3
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 (5.26) 

 
where !  labels the nuclei, and i and j  label the electrons. In equation (5.26), the first 
term (a spin-orbit interaction) corresponds to the coupling of the spin of each electron to 
the magnetic field it feels (in its reference frame) because of the presence of the electric 
Coulomb fields due to the other electrons (in their respective reference frames). The 
second term is also a spin-orbit interaction but this time with the Coulomb field of the 
nuclei, and the last term corresponds the spin-spin couplings between the intrinsic 
magnetic moments of each pair of electrons. The internal molecular Hamiltonian then 
becomes Ĥ

int
= Ĥ

rve
+ Ĥ

es
, and the total angular momentum must include both the orbital 

and electron spin momenta. It is usual to denote the orbital angular momentum with N̂  
(instead of Ĵ ), and the total angular momentum with Ĵ . We then write 
 
 Ĵ = N̂ + Ŝ,  (5.27) 
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where Ŝ  is the total electron spin operator. The associated quantum numbers J  and m  
refer to the sum of the orbital and spin angular momenta, and are those with which the 
molecular eigenfunctions can be labeled. 
On the other hand, if the interactions of the intrinsic magnetic and electric moments of 
the nuclei are taken into account, then the total angular momentum is denoted by F̂  with 
 
 F̂ = Ĵ + Î = N̂ + Ŝ + Î,  (5.28) 
 
where Î  is the total nuclear spin angular momentum. The corresponding nuclear 
hyperfine structure Hamiltonian Ĥ

hfs
 will include nuclei spin interactions similar in 

form to those of equation (5.26), as well as terms due to the nuclei electric quadrupole 
fields. The internal molecular Hamiltonian then becomes 
 
 Ĥ

int
= Ĥ

rve
+ Ĥ

es
+ Ĥ

hfs
,  (5.29) 

 
and the good quantum numbers with which the associated eigenfunctions can be labeled 
are those corresponding to F̂2

 and F̂
Z

, i.e., F  and m
F

 (
 
m

F
= 0,1,2,…,F ). 

5.2.2 The Born-Oppenheimer Approximation 
Coming back to equation (5.24) for the rovibronic Hamiltonian, we can simplify things 
greatly with the realization that the motion of the electrons can be separated from that of 
the nuclei. This is expected because of the significantly lower mass of the electrons. We 
can therefore imagine that as the nuclei are moving around, the electron will adjust 
themselves on a much shorter time scale (almost instantaneously as far as the nuclei are 
concerned). This is the idea at the centre of the so-called Born-Oppenheimer 
approximation. 

To proceed with this approximation, we introduce a new coordinate system that has its 
origin at the nuclear centre of mass instead of the molecular centre of mass. This 
difference in the location of the origin is important as it relates the motion of the electrons 
to the position of the nuclei. The Hamiltonian then becomes 
 
 Ĥ

rve
= T̂

e
+ T̂

N
+V R

N
,r
e( ),  (5.30) 

 
where T̂

e
 and T̂

N
 are the separated kinetic energies of the electrons and nuclei, 

respectively. The potential energy can also be advantageously written as 
 
 V R

N
,r
e( ) = Vee re( ) +VNN RN( ) +VNe RN

,r
e( ),  (5.31) 

 
where the different terms on the right hand side are for the separate summations of 
electron-electron, nucleus-nucleus, and nucleus-electron electrostatic potential energies, 
respectively. This Born-Oppenheimer approximation also implies that it is possible to 
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express the rovibronic wave function !
rve,nj

0  as the product of the electronic wave 
function !

elec,n
 and the rotation-vibration wave function !

rv,nj
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where the indices n  and j  relate to the particular electronic and rotation-vibration states, 
respectively. Obviously, we must realize that although the nuclei coordinates R

N
 are 

assumed constant in !
elec,n

, they are certainly allowed to vary in !
rv,nj

. The Schrödinger 
equation is then 
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or 
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with E

rve,nj

0  the eigenvalue when the molecule is in the electronic state n  and rotation-
vibration state j . It is therefore apparent that the potential energy for the nuclear rotation-
vibration Hamiltonian is V

NN
+V

elec,n( )  and includes a contribution from the electronic 
state through the presence of V

elec,n
. It is customary to rewrite things so that the zero 

energy for the rotation-vibration equation, in a given electronic state, is the minimum 
value of V

NN
+V

elec,n( ) , which is usually called the electronic energy E
elec,n

. Our 
molecular problem can then be rewritten with two Schrödinger equations: one 
determining the electronic states and another the nuclear (rotation-vibration) states 
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with 
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 (5.36) 

5.2.3 Separation of Vibration and Rotation Motions 
A further simplification of the problem is effected by introducing yet another coordinate 
system. This new system also has its origin at the nuclear centre of mass, but it is fixed to 
nuclei in such a way as to follow the rotational motion of the molecule. In comparison, 
the coordinate systems considered until now have been fixed in “space”. 

Once this substitution is made in the rotation-vibration Hamiltonian, and many other 
approximations are made (e.g., ignoring terms due to Coriolis interactions, anharmonic 
vibrational motions, etc.), it is possible to separate the two types of motion. The resulting 
Hamiltonian corresponding to the second of equations (5.35) is 
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where µ

!!

e  are the reciprocal of the principal moments of inertia of the molecule, Ĵ
!

 are 

the components of the total angular momentum, and Qk , !k , and P̂k  are, respectively, the 
normal modes of vibrations, their eigenvalues, and their associated linear momenta. 

A solution to the vibration part of the Hamiltonian (that of a harmonic oscillator) 
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yields a set of wave functions !

"
Q( ) , which depend on the normal modes of vibration 

(one for each non-degenerate mode or set of degenerate modes), with associated energy 
levels that are functions of the vibrational quantum number ! . For a non-degenerate 
mode the energy levels are given by  
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where 

 
! = 0,1,2,…  and 

 
! " #1 2 ! . The total energy of vibration for a molecule will 

consist of the summation over all the energies (of the type given by equation (5.39)) over 
all normal modes of vibration. 

The rotational Hamiltonian (that of a rigid rotator) is usually written 
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where 
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The principal axes a, b, and c  are always defined such that A

e
! B

e
! C

e
, and whether 

the molecular fixed z-axis  (fixed to the nuclei of the molecule when not vibrating) is 
identified with the a, b, and c  index the situation is usually defined as type I, II, or III. 
The quantity B

e
 is the rotational constant. 

It is convenient to discern between the following types of rotators 
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The solution to Schrödinger equation for the Hamiltonian of equation (5.40) will differ 
depending on what type of molecule is being considered. Examples of configuration for 
the rotational energy levels for molecules of the different types (i.e., spherical top, 
symmetrical top, linear, and asymmetric top molecules) are shown in Figure 5.1. For the 
purpose of our discussion it will be sufficient to limit ourselves to the case of linear 
molecules, it is then easy to show that the solution can be written as  
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and 
 
 

 
E
rot
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e
J J +1( )!2 ,  (5.43) 

 
where !

J
",#,$( )  is the wave function associated to the angular momentum quantum 

number J  . The quantities !, ", and #  are the Euler angles that relate the position of the 
molecule-fixed and space-fixed set of axes at all times. 

Finally, referring to equations (5.35), (5.39), and (5.40) we find that the total energy of a 
molecule (within our set of approximations) can be written as 
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 (5.44) 
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Figure 5.1 - Rotational energy levels for molecules of the different types (i.e., spherical 
top (CH

4
), symmetric top (CH

3
D ), linear (CO), and asymmetric top (H

2
O ) molecules).  

It is also important to note that these energies scale in such a way that 
 
 

 
E
elec
! E

vib
! E

rot
.  (5.45) 

 
It follows that the gas in the dense and cold parts of molecular clouds will mainly radiate 
through rotational transitions. The other types of transitions will happen in hotter regions, 
such as regions located close to protostars or within shock fronts. 

5.2.4 Selection Rules 

Whenever a molecule possesses a finite electric dipole moment µ̂ , it will regulate its 
interaction with any ambient electric field. More precisely, to adequately account for this 
interaction the molecular Hamiltonian must be augmented by the following perturbation 
term 
 
 Ĥdip = !µ̂ "E,  (5.46) 
 
The electric dipole is defined as 
 
 µ̂ = C

i
eR̂

i

i

! ,  (5.47) 
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where C
i
e  and R̂

i
 are the charge and the space-fixed position of particle i , respectively 

(the summation is over all electrons and nuclei).  

Selection rules for transitions within the Born-Oppenheimer, harmonic oscillator, and 
rigid rotators approximations can be established by a careful quantum mechanical 
analysis that specifies which states (i.e., wave functions) will be coupled by the 
perturbation Hamiltonian of equation (5.46). There is no simple way to state what 
electronic transitions will be allowed of not. Fortunately, such rules can be established for 
vibrational, rotational, and rovibrational transitions for the different types of molecules 
(i.e., rotators).    

 In general, vibrational transitions for a given normal mode (of index !
r
) are unrestricted. 

That is, 
 
 

 
!"

r
= #"

r
$ ##"

r
= ±1,± 2,± 3,…,  (5.48) 

 
where !"

r
 and !!"

r
 are the initial and final states, respectively. However, the so-called 

infrared active transitions (they happen in the infrared) with !"
r
= ±1 will normally be 

stronger. Other types of transitions, such as overtone (from the vibrational ground state 
to one state r  with !"

r
# 2 ) and combination tones (from the vibrational ground state 

to more than one state r  with !"
r
# 0 ) transitions are also possible.   

Rotational transitions, whether pure (i.e., !"
r
= 0  and no change in electronic state) or 

combined with vibrational transitions, are more complicated to generalize. But a rule on 
the angular momentum quantum number J  can be stated with 
 
 !J = "J # ""J = 0, ±1 "J = ""J = 0  is forbidden( ).  (5.49) 
 
where !J  and !!J  are the initial and final states, respectively. The reader should be aware, 
however, that the simplicity of the rule given in equation (5.49) is somewhat misleading, 
as other quantum numbers come into play for rotational transitions. Furthermore, these 
vary with the type of rigid rotator considered. In particular, pure rotational transitions 
(i.e., !"

r
= 0  and no change in electronic state) for symmetric top and linear molecules 

are only allowed when 
 
 !J = ±1  (5.50) 
 
because of energy and angular momentum conservations considerations. A transition 
with !J = 0  will only be allowed if !"

r
# 0 , as long as !J = !!J " 0 ; these are 

rovibrational transitions. 

A molecule will have no electric dipole whenever it is symmetric (e.g., H
2
, H

3

+
, and CH

4
 

in their electronic ground states). In such cases, interaction of the molecule with an 
ambient electric field will be regulated through its electric quadrupole moment Q̂!"  (it 
is a second rank tensor) through the corresponding perturbation Hamiltonian 
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 Ĥquad = !
1

6
Q̂"#

$E"

$x#" ,#

% .  (5.51) 

 
The electric quadrupole moment is defined as 
 
 Q̂!" = C

i
e 3X̂! ,i X̂" ,i # R̂i

2$!"( )
i

% ,  (5.52) 

  
where C

i
e , X̂

! ,i
, and R̂

i
 are the charge, and the ! th  component and the modulus of the 

space-fixed position of particle i , respectively (the summation is over all electrons and 
nuclei). The main difference in the selection rules, as compared to electric dipole 
transitions, is restricted to the rotational transitions. More precisely, we find that 
 
 !J = "J # ""J = 0,±1,± 2 "J = ""J = 0  is forbidden( ),  (5.53) 
 
where !J  and !!J  are the initial and final states, respectively. The other rules and 
comments described earlier for the electric dipole interaction also apply for the electric 
quadrupole transitions. However, it should always be kept in mind that other 
considerations can restrict these selection rules (e.g., conservation of energy and 
momenta, and Pauli’s exclusion principle).  

5.3 The Hydrogen Molecule 
It is rather ironic that perhaps the two most important molecules in molecular clouds, i.e., 
H
2
 and H

3

+ , are symmetric. It follows that they cannot be detected through the strong 
electric dipole transitions (they do not possess a dipole), but can only be observed via the 
relatively weaker electric quadrupole counterparts. Furthermore, this fact, combined with 
the low temperatures characterizing the dense and cold parts of molecular clouds, implies 
that these molecules will not be detectable in these regions (i.e., the quadrupole 
transitions will be too weak). Astronomers rely instead on other molecular species as 
tracers for these molecules (e.g., CO for H

2
). On the other hand, H

2
 and H

3

+  can be 
observed in other types of environment (e.g., shocks), which are energetic enough to 
induce electronic and vibrational transitions.  

Molecular hydrogen will then be subjected to the selection rules specified by equations 
(5.48) and (5.53) with the additional restrictions imposed on the nuclear spin states by the 
Pauli exclusion principle. This is because the two nuclei are identical particles (i.e., 
protons), and their associated spin wave functions will impose certain symmetries on the 
rovibrational wave functions to allow for quadrupole radiative transitions. More 
precisely, the selection rules for the angular momentum quantum number is not given by 
equation (5.53) but 
 
 !J = "J # ""J = 0,± 2 "J = ""J = 0  is forbidden( ).  (5.54) 
  



71 

 

Figure 5.2 – Rotational levels of H
2
 for the first two vibrational states. The J = 2! 0  

pure rotational electric quadrupole transition in the vibrational ground state is shown, as 
well as the 1! 0 S 1( )  rovibrational transition.  

Since H
2
 is the molecule with the smallest moment of inertia, the energy spacing 

between its rotational transitions will be the greatest (see equations (5.40) to (5.43)). For 
example, the J = 2! 0  pure rotational electric quadrupole transition in the vibrational 
ground state has an energy h! k

B
= 510 K , which is too high for cold molecular clouds. 

It is customary to denote a general rovibrational transition between the initial and final 
states !" , !J( )  and !!" , !!J( )  with !" # !!"  O !!J( ), Q !!J( ), S !!J( ) , depending whether 
!J = 2, 0, or " 2 , respectively. For example, the well-known 1! 0 S 1( )  transition that 
occurs at 2.12 µm  is shown in Figure 5.2. As can also be seen from this figure, the 
energy separation between vibrational states is on the order of almost 10

4
 K . The 

corresponding separation for electronic states is even higher at approximately 10
5
 K . 

5.4 Carbon Monoxide 
Carbon monoxide is not symmetric and, therefore, has a finite electric dipole moment 
that allows for the detection of strong pure rotational transitions with !J = ±1  (see 
equation (5.50)). Furthermore, this molecule also has a sizeable principle moment of 
inertia about axes perpendicular to the molecular axis. This implies that the spacing 
between adjacent energy levels will be accordingly small. Indeed, the energy associated 
with the fundamental J = 1! 0  (! = 0 ) pure rotational transition is !E

10
k

B
= 5.5 K ; 

this transition occurs at a wavelength of 2.6 mm or a frequency of 115 GHz. The next 
transition J = 2! 1  at 230 GHz has a corresponding energy of 16 K. We have here a 
molecule that lends itself perfectly to the observational study of the cold regions of 
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molecular clouds. The J = 1! 0  transition, as well as the positions of rotational energy 
levels, is shown in Figure 5.1. 

5.4.1 The Critical Density 
Molecules located deep inside molecular clouds, away from any substantial sources of 
radiation, will be excited through collisions with mainly H

2
. How much a given CO 

rotational level, in this case, will be populated depends on the number of, and the energy 
involved in, collisions. Referring to equations (5.2) and (5.3) for the neutral-neutral 
collision rate we realize that the level of excitation will depend on both the density of H

2
 

and the kinetic temperature T
kin

 of the gas.    

We define the critical density of the gas n
crit

 for a well-defined transition the density at 
which, for a given temperature T

kin
, the collision rate is equal to the Einstein coefficient 

for spontaneous emission A
ul

 between the upper (u) and lower (l) levels defining the 
transition. That is, there must be enough collisions to maintain a consistent population for 
the upper level of the transition. For example, for the J = 1! 0  transition of CO at 
T

kin
= 10 K  we have A

10
= 7.5 !10

"8
 s

"1 . Equating the collision rate given by equation 
(5.4) to this coefficient yields n

H2

! 7.5 "10
3
 cm

#3 . A more careful evaluation of the 
collision rate for these conditions would yield the more correct value of 
n

H2

= 3!10
3
 cm

"3 . 
 

Figure 5.3 – Pure rotational transitions of carbon monoxide within the ground vibrational 
state ! = 0 .     
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As the density of the gas increases beyond the critical density for the J = 1! 0 , other 
levels lying at higher energies will also become significantly populated as long as the 
density reaches their associated critical densities. The populations of the different levels 
are then given by Boltzmann’s relation 
 

 
N j

gj
=

N
tot

U T
ex( )
e
!Ej kBTex ,  (5.55) 

 
where N

j
 is the number of molecules in the state of energy E

j
 and degeneracy g

j
, N

tot
 

is the total number of molecules, and U T
ex( )  is the partition function at the excitation 

temperature T
ex

. When the levels are all populated through collisions as is assumed here, 
then T

ex
= T

kin
 and the molecules are in local thermodynamic equilibrium (LTE). 

5.4.2 Vibrational transitions 
In regions that are hot enough (e.g., in the surroundings of young stars) vibrational 
transitions such as those discussed in Section 5.2.4 can arise, and will generally be 
accompanied with rotational transitions (hence rovibrational transitions). For these it is 
possible that !J = 0,±1. Depending on the value of !J , we have the P-branch 
(!J = "1 ), the Q-branch (!J = 0 ), and the R-branch (!J = 1). 
 
 
 
 
 
 
 


