Chapter 21
Galaxy Evolution
21.1 Looking Back Through Time

• Our goals for learning
• How do we observe the life histories of galaxies?
• How did galaxies form?
How do we observe the life histories of galaxies?
Deep observations show us very distant galaxies as they were much earlier in time

(Old light from young galaxies)
The universe has been expanding ever since its birth. The timeline from the Big Bang to 15 billion years is depicted with images of galaxies at different stages.

- 300,000 years
- 1 billion years
- 3 billion years
- 5 billion years
- 7 billion years
- 10 billion years
- 15 billion years

© 2006 Pearson Education Inc, publishing as Addison-Wesley
How did galaxies form?
We still can’t directly observe the earliest galaxies
Our best models for galaxy formation assume:

- Matter originally filled all of space almost uniformly
- Gravity of denser regions pulled in surrounding matter
Denser regions contracted, forming *protogalactic clouds*

H and He gases in these clouds formed the first stars
Supernova explosions from first stars kept much of the gas from forming stars.

Leftover gas settled into spinning disk.

Conservation of angular momentum
But why do some galaxies end up looking so different?
What have we learned?

• How do we observe the life histories of galaxies?
 – Deep observations of the universe are showing us the history of galaxies because we are seeing galaxies as they were at different ages

• How did galaxies form?
 – Our best models for galaxy formation assume that gravity made galaxies out of regions of the early universe that were slightly denser than their surroundings
21.2 The Lives of Galaxies

- Our goals for learning
- Why do galaxies differ?
- What are starbursts?
Why do galaxies differ?
Why don’t all galaxies have similar disks?
Spin: Initial angular momentum of protogalactic cloud could determine size of resulting disk
Density: Elliptical galaxies could come from dense protogalactic clouds that were able to cool and form stars before gas settled into a disk.
Distant Red Ellipticals

- Observations of some distant red elliptical galaxies support the idea that most of their stars formed very early in the history of the universe.
We must also consider the effects of collisions
Collisions were much more likely early in time, because galaxies were closer together.
Many of the galaxies we see at great distances (and early times) indeed look violently disturbed.
The collisions we observe nearby trigger bursts of star formation
Modeling such collisions on a computer shows that two spiral galaxies can merge to make an elliptical
Modeling such collisions on a computer shows that two spiral galaxies can merge to make an elliptical
Shells of stars observed around some elliptical galaxies are probably the remains of past collisions.
Collisions may explain why elliptical galaxies tend to be found where galaxies are closer together.
Giant elliptical galaxies at the centers of clusters seem to have consumed a number of smaller galaxies.
What are starbursts?
Starburst galaxies are forming stars so quickly they would use up all their gas in less than a billion years.
Intensity of supernova explosions in starburst galaxies can drive galactic winds
Intensity of supernova explosions in starburst galaxies can drive galactic winds
A galactic wind in a small galaxy can drive away most of its gas.
What have we learned?

• Why do galaxies differ?
 – Some of the differences between galaxies may arise from the conditions in their protogalactic clouds
 – Collisions can play a major role because they can transform two spiral galaxies into an elliptical galaxy

• What are starbursts?
 – A starburst galaxy is transforming its gas into stars much more rapidly than a normal galaxy
21.3 Quasars and other Active Galactic Nuclei

- Our goals for learning
- What are quasars?
- What is the power source for quasars and other active galactic nuclei?
- Do supermassive black holes really exist?
- How do quasars let us study gas between the galaxies?
What are quasars?
If the center of a galaxy is unusually bright we call it an active galactic nucleus.

Quasars are the most luminous examples.

Active Nucleus in M87
The highly redshifted spectra of quasars indicate large distances.

From brightness and distance we find that luminosities of some quasars are $>10^{12} \ L_{\text{Sun}}$.

Variability shows that all this energy comes from region smaller than solar system.
Galaxies around quasars sometimes appear disturbed by collisions.
Quasars powerfully radiate energy over a very wide range of wavelengths, indicating that they contain matter with a wide range of temperatures.
Radio galaxies contain active nuclei shooting out vast jets of plasma that emits radio waves coming from electrons moving at near light speed.
The lobes of radio galaxies can extend over hundreds of millions of light years.
An active galactic nucleus can shoot out blobs of plasma moving at nearly the speed of light.

Speed of ejection suggests that a black hole is present.
Radio galaxies don’t appear as quasars because dusty gas clouds block our view of accretion disk.
Characteristics of Active Galaxies

- Luminosity can be enormous (>10^{12} \ L_{\text{Sun}})
- Luminosity can rapidly vary (comes from a space smaller than solar system)
- Emit energy over a wide range of wavelengths (contain matter with wide temperature range)
- Some drive jets of plasma at near light speed
What is the power source for quasars and other active galactic nuclei?
Accretion of gas onto a supermassive black hole appears to be the only way to explain all the properties of quasars.
Energy from a Black Hole

• Gravitational potential energy of matter falling into black hole turns into kinetic energy
• Friction in accretion disk turns kinetic energy into thermal energy (heat)
• Heat produces thermal radiation (photons)
• This process can convert 10-40% of $E = mc^2$ into radiation
Jets are thought to come from twisting of magnetic field in the inner part of accretion disk.
Do supermassive black holes really exist?
Orbits of stars at center of Milky Way stars indicate a black hole with mass of 4 million M_{Sun}.
Orbital speed and distance of gas orbiting center of M87 indicate a black hole with mass of 3 billion M_{Sun}.
Black Holes in Galaxies

• Many nearby galaxies – perhaps all of them – have supermassive black holes at their centers
• These black holes seem to be dormant active galactic nuclei
• All galaxies may have passed through a quasar-like stage earlier in time
Galaxies and Black Holes

- Mass of a galaxy’s central black hole is closely related to mass of its bulge.
Galaxies and Black Holes

- Development of central black hole must be somehow related to galaxy evolution.
How do quasars let us study gas between the galaxies?
Gas clouds between a quasar and Earth absorb some of a quasar’s light

We can learn about protogalactic clouds by studying the absorption lines they produce in quasar spectra
What have we learned?

• **What are quasars?**
 – Active galactic nuclei are very bright objects seen in the centers of some galaxies, and quasars are the most luminous type

• **What is the power source for quasars and other active galactic nuclei?**
 – The only model that adequately explains the observations holds that supermassive black holes are the power source
What have we learned?

• Do supermassive black holes really exist?
 – Observations of stars and gas clouds orbiting at the centers of galaxies indicate that many galaxies, and perhaps all of them, have supermassive black holes

• How do quasars let us study gas between the galaxies?
 – Absorption lines in the spectra of quasars tell us about intergalactic clouds between those quasars and Earth