Telescopes and Detectors

Telescopes

Gather light and make an image

 $\frac{1}{o} + \frac{1}{i} = \frac{1}{f}$, f = focal length, o = object distance, i = image distance.

The <u>objective</u> is either a lens or a mirror => <u>refracting</u> or <u>reflecting</u> telescope. May have two lenses/mirrors in general.

Reflectors: disadvantage - focus in front of mirror blocks light, but advantage - can support a large (heavy) objective from behind.

Important Properties of Telescopes

 $f \operatorname{ratio} = f/d$, $f \operatorname{ratio} \operatorname{increase} (\operatorname{decrease}) => \operatorname{brightness} \operatorname{decrease}$ (increase). For bright objects like Sun, Moon, planets, nearby stars, use high $f \operatorname{ratio}$, f/12 or above. For faint objects like galaxies, nebulae, use f/6 or below.

Resolving power RP = $1/\theta_{min}$; $\theta_{min} = 1.22 \lambda/d$ for circular aperture, but θ_{min} also limited by atmospheric turbulence.

Light gathering power LGP, a relative measure of collecting area.

Hubble Space Telescope $d = 2.4 \text{m} => \theta_{\min} = 0.05$ " for $\lambda = 500 \text{ nm}$.

Hale Telescope, Mt. Palomar d = 5m

Keck Telescopes, Mauna Kea $d = 10m \Rightarrow LGP = 4, 17.4$, vs. Hale, Hubble, respectively.

The Principle of Parabolic Mirrors

Elliptical spheroid => brings light from one focus to the other.

An optical or radio reflecting telescope is essentially one part of a giant imaginary ellipsoid. Light source (first focal point) is essentially at infinity => telescope surface is a paraboloid.

Surface irregularities must be smaller than a fraction of the wavelength being imaged.

Types of Reflecting Telescopes

Detectors

Signal to noise S/N = $\langle N \rangle / s_M$, where $\langle N \rangle$ = mean # of photons and $s_M = \langle N \rangle^{1/2}$ is the standard deviation of random errors in the counting of photons.

 $=> S/N = <N>^{1/2}.$

 $<N>=f_{p} \times t \times QE$, where

 $f_{\rm p}$ = # photons/time received (proportional to Area)

QE = Quantum efficiency = fraction of photons actually detected

Human eye, QE ~ 0.01

```
Photographic plate, QE ~ few x 0.01
```

```
Charge-coupled device (CCD), QE ~ 1.0
```

Non-optical Wavelengths

Radio: $\lambda \sim 10^5$ times visible => $\theta_{\min} = \lambda/d$ very large => interferometry with multiple dishes of separation a >> d.

Infrared: observe at high altitude, avoid atmospheric H_2O .

UV, X-ray, gamma ray, most infrared: space based observatories.

Spectroscopy

Analyze spectral distribution of light and spectral line profiles

Grating spectrograph: etched grooves act like multiple slits => interference, i.e., different λ 's add constructively at different locations => generate spectrum.

Spectroscopy

Spectrum of a solar-type star.

Blackbody spectrum with prominent absorption lines.