Stars: Observations

Trigonometric Parallax

The only direct distance measurement to a star.

Nearest star, α Centauri $\pi=0.76 " \Rightarrow d=1.3 \mathrm{pc}$.
π can be measured down to values 0.01 ", or $d=100 \mathrm{pc}$.
Fewer than 10,000 measured (500 known well), but > 10^{11} stars in Galaxy, on scales up to 30 kpc .

Other Geometric Methods

(1) Moving cluster method:

Measure change in apparent angular size of a cluster.

$$
\begin{aligned}
& r=[v t \sin \theta] /\left[\sin \theta^{\prime}-\sin \theta\right] \\
& \Rightarrow r \cong v t \theta / \Delta \theta .
\end{aligned}
$$

Works for Hyades cluster, $d=43 \mathrm{pc}$, and a few others.
(2) Mean motion of the Sun: Sun's motion in the Galaxy (4.1 AU/yr) provides a parallax over time. Measure mean parallax of a group of stars.

Luminosity Distances

If we can estimate intrinsic luminosity L and measure flux f, use $f=\frac{L}{4 \pi d^{2}} \quad$ to get distance d.

Magnitude Scale

Based on Hipparchus' scale ~ 2000 yr ago.
Brightest - 1st mag, faintest - 6th mag.
5 mag difference $=$ factor of 100 in brightness $=>1 \mathrm{mag}$ difference
$=$ factor $100^{1 / 5}=2.51$ in brightness.
A logarithmic scale, like human eye response.
$f \rightarrow 10 f \rightarrow 100 f \quad$ Equal ratios of actual intensity correspond $m \rightarrow m+2.5 \rightarrow m+5$ to equal intervals in magnitude.

Magnitude Scale

Keep the historical scale but extend to brighter ($m<1$) and fainter ($m>6$) objects. Modern scale defined by
$m_{2}-m_{1}=2.5 \log _{10}\left(\frac{f_{1}}{f_{2}}\right)$, where m_{1} and m_{2} are apparent magnitudes.
Key elements of magnitude scale:
(1) scale is logarithmic
(2) brighter objects have smaller magnitudes (even negative)
(3) an object has relatively low apparent magnitude if it has high luminosity and/or is close to us.

Apparent Magnitudes

Object	magnitude
Sun	-26.5
Full moon	-12.5
Venus	-4
Jupiter	-2
Mars	-2
Sirius	-1.5
Aldebaran	1
Altair	1
Naked-eye limit	6.5
Binocular limit	10
15 cm telescope	13
5 m telescope (visual)	20
5 m photographic limit	24

$\Delta \mathbf{m}$	$\mathbf{f}_{1} / \mathbf{f}_{\mathbf{2}}$
0.5	1.6
1	2.5
1.5	4
2	6.3
4	40
5	100
6	251
10	10,000
20	$100,000,000$
25	$10,000,000,000$
f_{1}	$10^{2 / 5\left(m_{2}-m_{1}\right)}$
f_{2}	

Absolute Magnitude

Since apparent magnitude depends on distance, need a true measure of a star's luminosity.

Absolute magnitude $M=$ apparent magnitude if star is at distance $D=10 \mathrm{pc}$ from the Sun; a measure of true luminosity. If $d=$ actual distance, then
$f=\frac{L}{4 \pi d^{2}} \Rightarrow \frac{f_{M}}{f_{m}}=\left(\frac{d}{10}\right)^{2}$, where d is in pc.
$\therefore m-M=2.5 \log \left(\frac{d}{10}\right)^{2}=5 \log \left(\frac{d}{10}\right)$, often called the "distance modulus".
Can get M (i.e., L) if we measure m (i.e., f) and know d.

Magnitudes at Different Wavelengths

Detectors usually sensitive to particular wavelength bands.

A star's blackbody (BB) spectrum. Take $\Delta \lambda=100 \mathrm{~nm}$, and center bands at $365 \mathrm{~nm}, 440 \mathrm{~nm}$, and $550 \mathrm{~nm}=>$ UBV photometry.
If spectrum approx. $B B$, ratio of fluxes at different λ 's $=>$ temperature.
Measure apparent magnitudes U, B, V. If know d, get absolute magnitudes M_{U}, M_{B}, M_{V}.
Color index (CI): $U-B\left(=M_{U}-M_{B}\right)=$ constant $+2.5 \log \left(f_{B} / f_{U}\right)$,

$$
B-V\left(=M_{B}-M_{V}\right)=\text { constant }+2.5 \log \left(f_{V} / f_{B}\right)
$$

Pick constant so that $U-B=B-V=0$ for $T=10^{4} \mathrm{~K}$.
So, "hot" stars ($T>10^{4} \mathrm{~K}$) have $\mathrm{CI}<0$, and "cool" stars $\left(T<10^{4} \mathrm{~K}\right)$ have CI >0.

Bolometric Magnitude

Total (bolometric) flux $\quad f_{\text {bol }}=\int f(\lambda) d \lambda$.
Use to get an apparent bolometric magnitude

$$
m_{b o l}=m_{V}+2.5 \log \left(\frac{f_{V}}{f_{b o l}}\right)
$$

Can also get $M_{b o l}$ if know d. In practice:
(1) Measure m_{V} or M_{V} for a star.
(2) use theoretical models for the inferred type of star to estimate total luminosity $L_{\text {bol }}$ or flux $f_{b o l}$.
(3) estimate bolometric correction (BC) and get $M_{b o l}$;

$$
M_{b o l}=M_{V}+B C, \text { where } B C=m_{b o l}-m_{V}=M_{b o l}-M_{V}=-2.5 \log \left(f_{b o l} / f_{V}\right) .
$$

Note: BC hard to estimate when only a small fraction of star's energy radiated in V band. BB curve peaks in V when $T=6700 \mathrm{~K}$.

Classifying Stellar Spectra

(B)

(C)

Can classify stars into several broad categories based on their spectral line patterns.

Stellar Spectra

Classification yields information about
(1) temperature (to 1st approximation, Sp type <=> temperature) and also
(2) luminosity
(3) chemical abundances
(4) velocity, rotation, mass inflow/outflow, magnetic fields

Spectral classification system (early 1900's at Harvard, Annie J. Cannon) based on spectra of $\sim 400,000$ brightest stars.

1st try: order according to Balmer line strengths, A to P , with A strongest and P weakest. Later, some letters dropped and reordered to correspond to decreasing temperature sequence.

Spectral Types

hottest Balmer lines peak
coolest
"early type" \longrightarrow "late type"
Recall Boltzmann and Saha eqn.'s => $n=2$ state most populated at $\mathrm{T}=10^{4} \mathrm{~K}$.

Each spectral type has 10 subclasses, $0-9$, e.g., O0...O9, B0...B9, A0,...A9, etc.

Sun is type G2.

Spectral Types
 The Harvard Spectral Sequence:

Spectral Type
O

B

A

F
G
K

M

Principal Characteristics

Hottest bluish-white stars; relatively few lines; He II dominates

Hot bluish-white stars; more lines; He I dominates
White stars; ionized metal lines; hydrogen Balmer lines dominate

White stars; hydrogen lines declining; neutral metal lines increasing

Yellowish stars; many metal lines; Ca II lines dominate
Reddish stars; molecular bands appear; neutral metal lines dominate

Coolest reddish stars; neutral metal lines strong; molecular bands dominate

Strength of various spectral lines at different temperatures (Sp type).

Hertzsprung-Russell (H-R) diagram

For nearby stars, know absolute magnitude (due to parallax) as well as Sp type. Plot M_{V} vs. Sp type => H-R diagram ~1911-1913.

$\sim 90 \%$ of nearby stars fall on main sequence. But notable exceptions exist. For some Sp types, a few stars have very different luminosities.

Luminosity Classes

Morgan-Keenan (M-K) classification scheme - purely empirical; subclasses also exist.

Note that higher L with the same T implies larger radius R, since $L=4 \pi R^{2} \sigma T^{4}$. Hence "giants."

Luminosity Classes

Explanation of features (1) and (2) of giants:

$$
g_{\text {sufface }}=\frac{G M}{R^{2}} \quad \begin{aligned}
& \text { much smaller than for dwarfs, e.g., G2 supergiant is } \\
& 12.5 \text { mag brighter than the Sun. }
\end{aligned}
$$

$$
\text { Why? } \quad \frac{L_{S G}}{L_{S u n}}=10^{5} \Rightarrow \frac{R_{S G}}{R_{S u n}}=\left(10^{5}\right)^{1 / 2}=10^{2.5} .
$$

For a reasonable $M_{S G} M_{S u n}$ ratio (<100), find $\quad \frac{g_{S G}}{g_{S u n}} \approx 10^{-4}$.
Therefore, photospheric gas pressure and density also much lower.
Less collisional (pressure) broadening of spectral lines explains feature (1), and lower electron density N_{e} means greater N_{+} / N_{0} ratio in Saha equation for a given T, explaining feature (2).

Luminosity Classes

What about the subdwarfs?

Empirically, if know T and g in atmosphere, can predict line strengths. Then, if line strengths don't match, change abundance until match. Abundance = relative mass fractions of $\mathrm{H}($ called $X)$, of He (called Y) and of metals (called Z). This lead to discovery of two populations of stars.

Pop I: $Z \sim 0.02$, metal rich, younger, and located nearby and in Galactic disk.

Pop II: $Z \sim 0.001$, metal poor, older, located mainly in Galactic halo.

Subdwarfs are Pop II stars; fewer heavy elements make them appear slightly hotter and bluer due to less line blanketing.

Color-magnitude diagrams

A quicker route to H-R diagram: use color indices (e.g., $B-V$), which correlate roughly with Sp type or temperature. Plot color index vs. absolute magnitude.
This method has pitfalls, since e.g., $B-V$ not a good indicator for very hot or very cool stars. But colors are much easier to measure!

An open (or galactic) cluster. Younger stars with more heavy elements.

A globular cluster. Older stars with fewer heavy elements.

Star Clusters

Groups of stars, held together by self-gravity. Two types:
(1) Open (galactic) clusters $-\sim 10^{2}-10^{4}$ stars, found close to Galactic plane, pop I
(2) Globular clusters $-\sim 10^{5}-10^{6}$ stars, large heights above Galactic plane, pop II, oldest observed objects in the universe.
Both (1) and (2) are easily recognized, allow distance determinations and testing of stellar evolution theories.

Open cluster M6

Globular cluster M2

Distance determinations to Clusters

(A)

(B)

Sp type can be used to estimate absolute $\operatorname{mag} M$ of a star. Compare to apparent $\operatorname{mag} m$ to determine distance d for a main sequence star (spectroscopic parallax).

Better yet, find the offset between m and M for an entire cluster main sequence (main-sequence fitting). Use to get d for the cluster. This minimizes errors.

Note that both rely on a well-calibrated H-R diagram (e.g., from parallax or moving cluster method).

