The Solar System

An Overview

Sun
Planets: terrestrial - Mercury, Venus, Earth, Mars gas giants - Jupiter, Saturn, Uranus, Neptune Pluto?

Moons: ~61 known, only 3 orbit terrestrial planets
Asteroids (also meteoroids)
Comets
Rings: around all four gas giants
Interplanetary gas, dust

Key Features of the Solar System

- The Sun dominates the mass; all other components $=0.0014 \mathrm{M}_{\text {sun }}$
- Jupiter's orbit contains nearly all the angular momentum of the System; collectively, planets hold > 99\% of SS angular momentum
- The Sun dominates energy output; small contributions from Jupiter, Saturn, Uranus, and Neptune
- All planetary orbit planes close to ecliptic, i.e., nearly coplanar. Mercury 7^{0} inclination, Pluto 17^{0}, all others < 3.4^{0}
- Nearly circular orbits, i.e., small eccentricities. Mercury 0.206, Pluto 0.249 , all others < 0.1
- "Direct orbits" (planetary rotation in same sense as orbit) in most cases. Exceptions: Venus $i=177^{\circ}$ (retrograde rotation), Uranus $i=$ 98° (rotates on side)

Planetary Interiors

Masses: from (1) Kepler's 3rd Law applied to satellite orbits or (2) gravitational perturbations to orbits of passing objects.

Radii: from (1) apparent optical size, (2) timing occultations of stars, moons, space probes, and (3) timing radar pulses from various parts of nearby planets
Mean density $\langle\rho\rangle=\frac{M}{4 / 3 \pi R^{3}}$.
Terrestrial: < ρ > in range $3400-5500 \mathrm{~kg} / \mathrm{m}^{3}$ (vs. water $1000 \mathrm{~kg} / \mathrm{m}^{3}$) - heavy elements such as iron, silicon, magnesium

Gas giants: < ρ > in range $700-1700 \mathrm{~kg} / \mathrm{m}^{3}$, mainly H and He , like Sun, but probably do have a rocky core resembling the terrestrial planets

Planetary Surfaces

Albedo $A=$ fraction of incident solar energy that is reflected.
Power emitted by Sun $\quad P_{S u n}=4 \pi R_{S u n}^{2} \sigma T_{S u n}^{4}$.
Flux received at planet $\quad F_{p}=P_{\text {Sun }} /\left(4 \pi r_{p}^{2}\right)$.
Power absorbed by planet $P_{p, a b s}=(1-A) \pi R_{p}^{2} F_{p}$.
Power emitted by planet $\quad P_{p, e m}=4 \pi R_{p}^{2} \sigma T_{p}^{4}$.
Equate power absorbed and emitted by planet to find equilibrium

$$
\begin{aligned}
T_{p} & =(1-A)^{1 / 4}\left(R_{\text {Sun }} / 2 r_{p}\right)^{1 / 2} T_{\text {Sun }} \\
& \approx 279(1-A)^{1 / 4} r_{p}^{-1 / 2}, \text { where } r_{p} \text { is in AU. }
\end{aligned}
$$

For Earth ($r_{p}=1, A=0.35$) find $T_{p}=250 \mathrm{~K}$. Compare to actual average 290 K at Earth's surface.

Planetary Atmospheres

Mercury: essentially no atmosphere.Venus, Mars: CO_{2} atmosphere, Earth: primarily N_{2} and O_{2}. Jovian: mainly H and He .
Greenhouse effect: Earth absorbs visual light. Reradiates primarily in infrared. Infrared photons absorbed by atmospheric CO_{2} and $\mathrm{H}_{2} \mathrm{O}=>$ thermal energv concentrated near surface.

Stratification: $\frac{d P}{d z}=-\rho g_{z}$, and $P=n k T$.
If $T=$ const.,

$$
\rho(z)=\rho_{0} \exp (-z / H) \text {, where } H=\frac{k T}{\mu m_{H}} \frac{1}{g_{z}}=\text { scale height. }
$$

At large heights, solar UV and x-rays => ionosphere.

Planetary Atmospheres

Maxwellian distribution of atomic/molecular speeds
$F(v) \propto v^{2} \exp \left(-1 / 2 m v^{2} / k T\right) \Rightarrow v_{r m s}=(3 k T / m)^{1 / 2}$.
Compare with escape speed

$$
v_{e s c}=(2 G M / R)^{1 / 2} .
$$

A gas can be maintained for billions of years if

$$
v_{e s c} \geq 10 v_{r m s} \Rightarrow T \leq \frac{G M m}{150 k R} .
$$

Figure: dots at position of temperature and $v_{\text {esc }}$ for each planet, dashed lines represent $v=10 v_{\mathrm{rms}}$ for each element.

Moons

61 known
Earth - Moon (almost a double system)
Mars - two captured asteroids (Phobos and Deimos)
Jupiter - ≥ 16 moons. Four largest: Io - volcanic activity. Europa ice surface (+ocean below?). Ganymede - largest moon in SS. Callisto.

Saturn - ≥ 19 moons. Titan - atmosphere, N_{2} (+ocean of N_{2} on surface?)

Uranus - ≥ 15 moons. Most move in planet's equatorial plane, perpendicular to ecliptic

Neptune - ≥ 8 moons. Triton - atmosphere, $\mathrm{N}_{2}, \mathrm{CH}_{4}$

Asteroids

- First observed in 1801 - Ceres
- Found in asteroid belt, 2.3-3.3 AU, ~3000 known
- Size 1 km - 1000 km (Ceres). Irregular shapes.
- No atmospheres
- Depleted regions (Kirkwood gaps) at radii where P is a simple fraction (e.g., 1/2, 1/3, 1/4, 2/5, 3/7) of Jupiter's orbital period

Meteoroids

- Pieces from asteroid collisions and disintegrated comets
- Size $\sim 1 \mathrm{~mm}$ - 10 km .
- Terminology: Meteor - a meteoroid which enters the Earth's atmosphere (a "shooting star"). Meteorite - a piece of a meteor which reaches the Earth's surface; stones (including carbonaceous chondrites), stony irons, and irons.

Comets

- Nucleus $(1-10 \mathrm{~km})+\operatorname{coma}\left(\sim 10^{5} \mathrm{~km}\right)+$ tail $\left(>10^{6}\right.$ km).
- Nucleus: dust + frozen $\mathrm{H}_{2} \mathrm{O}, \mathrm{CH}_{4}, \mathrm{NH}_{3}, \mathrm{CO}_{2}$, a "dirty snowball"
- Tail: vaporized gases, ion tail and dust tail. Typically point away from Sun. The comet eventually evaporates after many encounters.
- Two groups: (1) long period, P up to millions of yrs, $e \sim 1$, seen only once. (2) short period, $P>3 \mathrm{yrs}$, return regularly, e.g., Halley's comet, $P=76$ yr.
- Oort cloud, size $\sim 10^{4}-10^{5} \mathrm{AU}$, supplies comets. A spherical volume, i.e., comet orbits have arbitrary inclination to ecliptic.

Rings

- Found around all four Jovian planets. All lie within Roche limit. Remains of tidal disruption?

Dust

- Size 1-100 $\mu \mathrm{m}$
- From dust tails of comets. Also, gas from solar wind and escape from planetary atmospheres.
- Responsible for zodiacal light emission.
- Dust must be continually replenished, as small ($<1 \mu \mathrm{~m}$) dust blown out of SS by solar wind, and larger ($>1 \mu \mathrm{~m}$) dust spirals into the Sun.
- $10^{6} \mathrm{~kg}$ (dust + meteoroids) deposited to Earth every day

