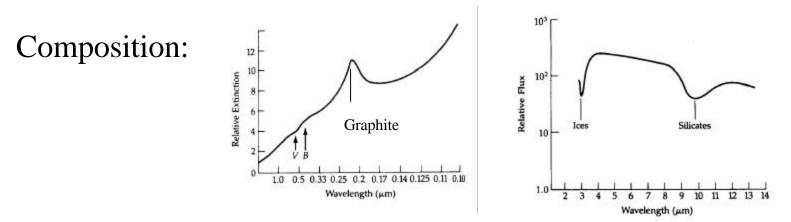

Interstellar Medium and Star Birth

The Dark Cloud B68 at Different Wavelengths (NTT + SOFI)

ESO PR Photo 29b/99 (2 July 1999)

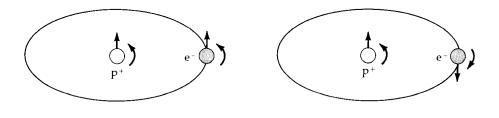


Lagoon nebula: dust + gas

Interstellar Dust

Extinction and scattering responsible for localized patches of darkness (<u>dark clouds</u>), as well as widespread obscuration of light from distant stars.

Graphite and silicates, with icy mantles. Sizes ~ $0.005 - 0.2 \mu m$. Also, polycyclic aromatic hydrocarbons (PAH's).


Dust amounts to only 1% of total mass of ISM (rest is gas), but inferred first due to strong extinction.

Origin: condensation within winds from cool supergiant stars.

Interstellar Gas

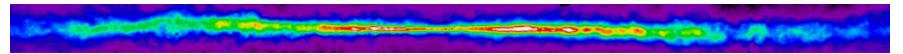
Hartmann (1904) - stationary (and narrow) *absorption* lines in the spectrum of spectroscopic binaries.

Van de Hulst (1945) - prediction of 21 cm *emission* line of H. Detected by Ewen and Purcell (1951), and others.

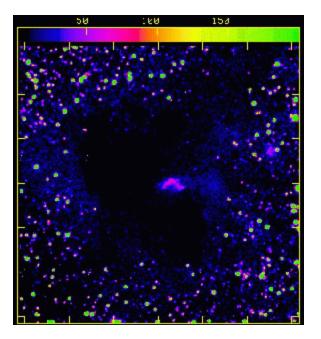
Hyperfine transition => antiparallel spins have lower energy.

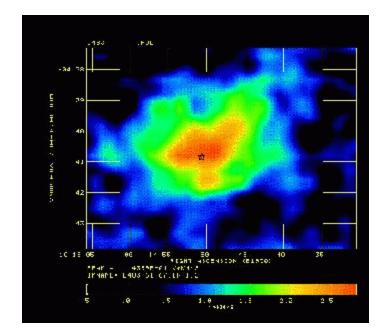
It turns out dense regions allow the formation of molecules, H_2 and trace molecules like CO, CN, OH,... Detected by their spectral lines since mid 1960's.

Interstellar Gas


Multiwavelength approach allows a panoramic view of galactic gas or dust, while only dark patches were visible in optical image.

Optical


Infrared, 100 μm


Neutral Hydrogen H, in 21 cm line

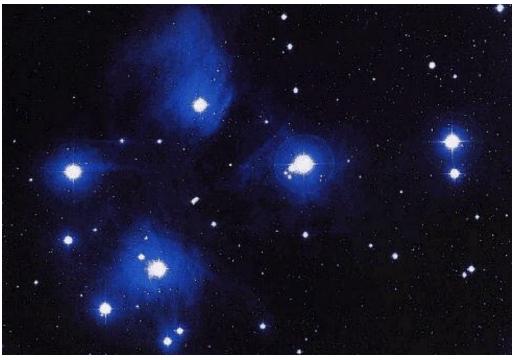
CO emission at 2.7 mm, a tracer of H_2

<u>Dark nebulae</u> (<u>dark cloud</u>) - Dark patches in optical observations which hide more distant objects. Contain gas and dust. Dust blocks visual. Cool gas emits in wavelengths longer than visible.

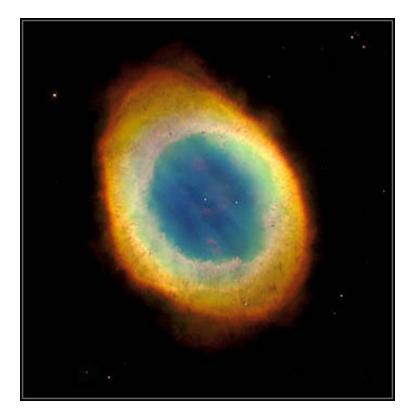


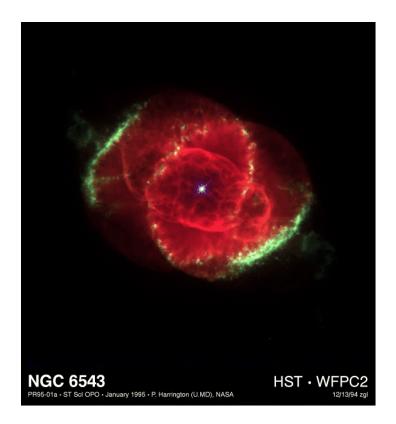
Same region in radio

Optical

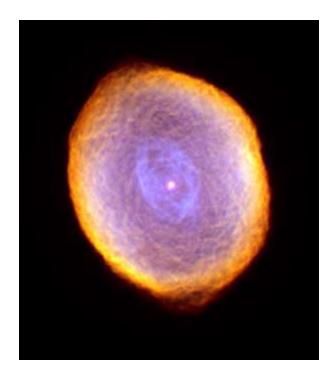

<u>Reflection nebulae</u> - scattered light (mainly by dust) from embedded star. Blue light scattered preferentially.

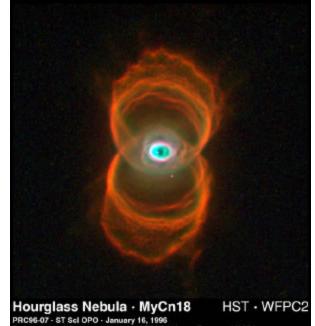
Emission nebulae - emission from recombining atoms (usually H) within zones of ionized material (H II regions) created by hot (type O or B) stars. Often see red H α line emitted during recombination cascade.


Emission, reflection, and dark nebulae in rho Ophiuchus.



Trifid Nebula emission, reflection and dark nebulae The Pleiades star cluster - reflection nebulae

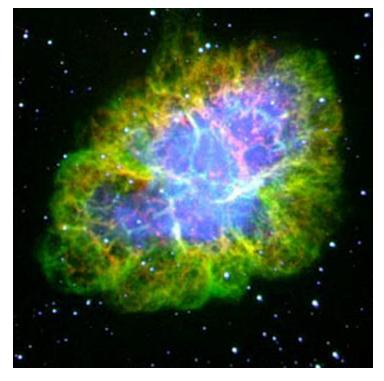

<u>Planetary nebulae</u> - similar to emission nebulae, but exciting object is a hot evolved star. Material expelled from star in post-main sequence phase. Among most spectacular objects in the sky!



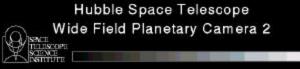

Ring nebula

Diversity of planetary nebulae

R. Sahai and J. Trauger (JPL), the WFPC2 Science Team and NASA

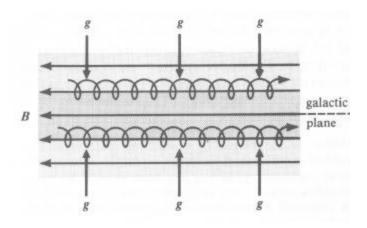


Planetary Nebula M2-9 PRC97-38a • ST Scl OPO • December 17, 1997 Balick (University of Washington) and NASA


HST · WFPC2

IC 418 - Spirograph nebula

<u>Supernova remnants</u> - optical emission from ionized material. Radio emission from relativistic electrons spiraling around magnetic fields.


Crab nebula

Cosmic Rays and Magnetic Field

<u>Cosmic rays</u> - very high energy charged particles; p, e, He⁺⁺, Li⁺⁺⁺, ... Ultrarelativistic energies, up to 10^{20} eV => $v \sim c$.

Origin: supernovae?

Are not gravitationally confined to the Galaxy. So why do we see them?


```
Interstellar B \sim \text{few x } 10^{-10} \text{ T.}
```

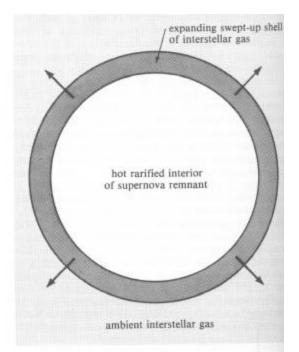
CR's spiral around **B** field => emit synchrotron radiation in radio band. A nonthermal form of radiation.

Note: Gas is confined by gravity and maintains currents that generate B. CR's confined by B, not gravity.

Size of Emission Nebulae (H II regions)

Apply steady-state condition: ionization rate = recombination rate.

Let $N_* = \#$ of Lyman continuum ($\lambda < 91.2$ nm) photons which leave the central star(s) per unit time.


Let R = # of recombinations of protons and electrons into H atoms per unit volume per unit time = $\alpha n_e n_p = \alpha n^2$, where α is the recombination coefficient, and *n* is a number density.

$$N_* = \frac{4}{3} \mathbf{p} r_s^3 R \implies r_s = \left(\frac{3N_*}{4\mathbf{pa}n^2}\right)^{1/3}$$

Stromgren radius

However, note that H II regions are rarely spherical.

Supernova Interaction with Interstellar Medium

Supernovae and stellar winds => mass, momentum, and energy transfer to ISM.

Make quick estimate using snowplow model (momentum conservation) for a supernova remnant.

Ejected mass $M_0 \approx 4M_{Sun}, v_0 \approx 5,000 \text{ km s}^{-1}$

Swept-up mass
$$M = \frac{4}{3} \mathbf{p} r^3 \mathbf{r}$$

Momentum conservation $\Rightarrow (M + M_0)v = M_0v_0$.

Shell dissipates when $v \sim 10 \text{ km s}^{-1}$, the random speed of ISM gas. So can sweep up $M = \frac{M_0(v_0 - v)}{v} \approx 4M_{Sun} \frac{5,000 - 10}{10} \approx 2,000 M_{Sun}$.

Energy? $\frac{E}{E_0} = \frac{Mv^2}{M_0 v_0^2} = \frac{2,000M_{Sun}(10 \text{ km s}^{-1})^2}{4M_{Sun}(5,000 \text{ km s}^{-1})^2} = 2 \times 10^{-3}$. Where did it go?

Star Formation

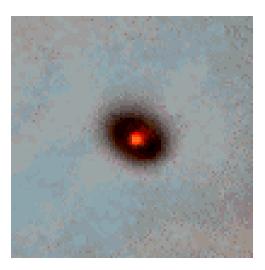
Need gravity to dominate in a local region. What is a typical size scale for collapse?

Need
$$|U_{grav}| \approx \frac{GM^2}{L}$$
 to exceed $E_{th} = \frac{3}{2}NkT$.

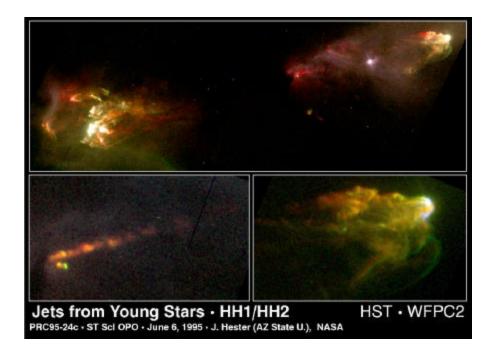
Actual relation is $2E_{th} \leq -U_{grav}$.

Using $N = M / 2m_H$ for dense regions of molecular hydrogen and $M \approx \mathbf{r} L^3$ we get $L \ge L_J \approx \left(\frac{kT}{m_H G \mathbf{r}}\right)^{1/2} \approx 10^7 \left(\frac{T}{\mathbf{r}}\right)^{1/2} \text{m.}$

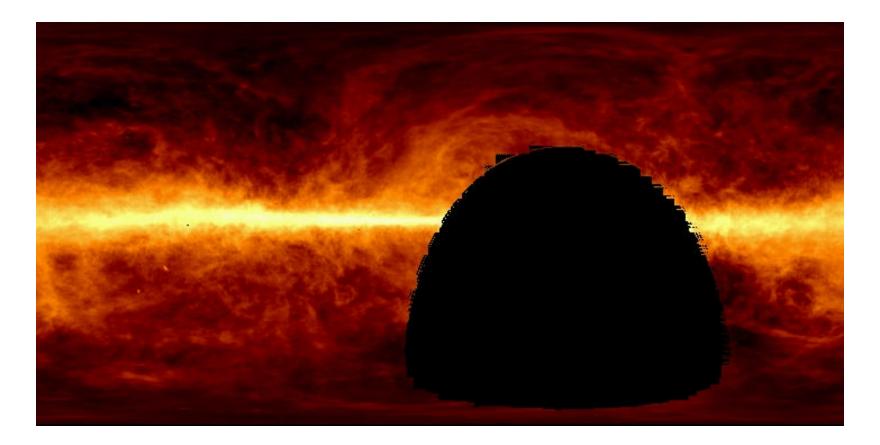
The "Jeans length".


Star Formation

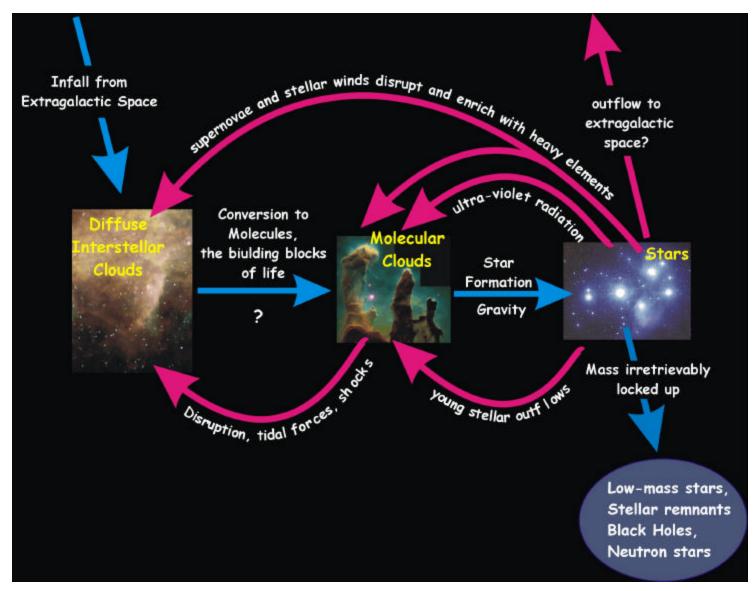
Some consequences of collapse:


Conservation of angular momentum => rapidly rotating disks.

Conservation of magnetic flux => strong magnetic fields.


Magnetic field acts as the agent to eject high angular momentum material and allow collapse to form a star => infall + outflows.

YSO with disk



Milky Way in Radio (21 cm)

See rich structure due to rotation, magnetic fields, and feedback from stars via supernovae and stellar winds.

The Evolution of Matter

The "ecosystem" of galaxies