Our Galaxy

The Distribution of Stars

Count them!
Measure all stars of a given intrinsic luminosity L. At a distance r_{0}, such a star has apparent brightness $f_{0}=L / 4 \pi r_{0}{ }^{2}$. If the number density $n(L)$ does not depend on distance, expect the number of observed stars with $f>f_{0}$ to be
$N_{L}\left(f>f_{0}\right)=n(L) \frac{4}{3} \pi r_{0}^{3}=\frac{n(L) L^{3 / 2}}{3(4 \pi)^{1 / 2}} f_{0}^{-3 / 2}$.
So if $N=1000$ stars brighter than some f_{0}, then the number of stars brighter than $f_{0} / 4$ should be $N^{\prime}=(1 / 4)^{-3 / 2} * 1000=8000$.

The Distribution of Stars

J. C. Kapteyn (1922) culminated the work of many astronomers, and deduced a spatial distribution of stars. The previous model was found to work only if $n(L)$ was allowed to decrease with distance r, and more quickly in some directions than in others.

Best fit: an oblate spheroidal model, with the Sun at the center.

The "Kapteyn Universe"

The True Size and Shape of our Galaxy

Shapley (1917) - Uses a period-luminosity relation for RR Lyrae pulsators to get the distances to globular cluster (GC) systems.

Result: GC's form a spheroidal system. The Sun is not at the center.

> Similar to Copernicus' dethronement of the Earth from the center of our planetary system.

The Discovery of Interstellar Dust

Trumpler (1930) - evidence for absorption of light from distant open clusters. Measure
$\theta=\frac{D}{r}$ and $f=\frac{L}{4 \pi r^{2}} \Rightarrow f=\left(\frac{L}{4 \pi D^{2}}\right) \theta^{2}$,
where D is the intrinsic diameter and r is the distance. Expect straight-line correlation on a log-log plot, with scatter due to variations in D and L about mean values.

The Discovery of Interstellar Dust

Also, detect reddening.
Short wavelengths more likely to be scattered - similar to Earth's atmosphere.

The mechanism of interstellar reddening.

Extinction and reddening attributed to interstellar dust.

The Milky Way viewed from the Southern hemisphere

A Modern View of our Galaxy

(A)

(B)

Components:
disk - gas and dust and stars (pop I). Spiral arm structure. Circular speeds
>> random speeds =>
flattened shape
bulge - pop I and pop II stars. No strong sense of rotation.
halo - pop II stars (older, lower Z). Many globular clusters. Large random speeds. Less tightly bound than bulge. Contains dark matter?

