Equilibrium Properties of Matter and Radiation

Temperature

What is it?

A measure of internal energy in a system. Measure from

- (1) velocities of atoms/molecules
- (2) population of excited/ionized states
- (3) properties of emitted radiation

Maxwell Distribution for Gas Velocities

From a microscopic point of view, temperature (T) is a measure of the velocity distribution of gas particles.

At equilibrium, gas particles obey a distribution function for speeds

$$F(v) \propto v^2 e^{-1/2mv^2/kT}$$
 Maxwellian Distribution

where m = mass of individual particles, k = Boltzmann constant, and F(v) dv is the probability that a gas particle has speed in the interval dv.

Mean speed? Most meaningful is the root mean square value

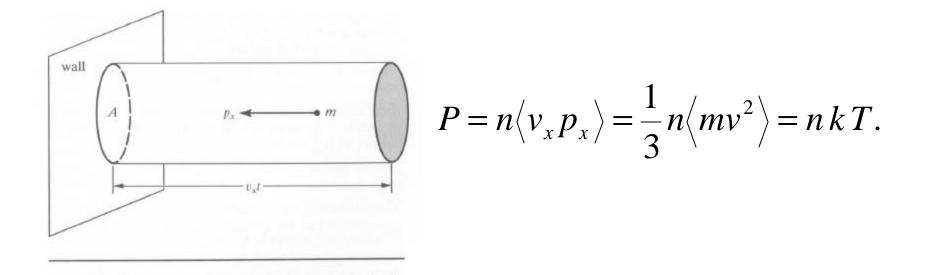
$$v_{rms} = \left\langle v^2 \right\rangle^{1/2} = \left(\frac{3kT}{m}\right)^{1/2}$$

T from this definition known as the <u>kinetic temperature</u>.

Ideal (Perfect) Gas

P = n k T, where P = pressure = force/area, and n = number density.

Derive above relation from definition of pressure, properties of Maxwell distribution, and diagram below.



Excitation Equilibrium

The <u>equivalent width</u> of a spectral line depends on the number of atoms in the energy state from which the transition occurs.

Level populations depend on *T*: high *T* => more KE to cause excitations. In steady state (excitations balanced by de-excitations),

$$N_B/N_A = (g_B/g_A) \exp[-(E_B - E_A)/kT]$$
 Boltzmann equation

g = multiplicity of the level, E = energy of the level Get a significant population in the upper level when

 $T \approx \frac{E_B - E_A}{k}$, e.g., for excitation energy $\Delta E = 1 \text{ eV}$ => T = 11,600 K.

T from this definition known as the <u>excitation temperature</u>.

Ionization Equilibrium

When *T* is high enough, significant number of atoms are ionized. Steady-state balance between ionization and recombination,

 $X \leftrightarrow X^+ + e^-$, yields

$$\frac{N_{+}}{N_{0}} = \left[A(kT)^{3/2} / N_{e}\right] \exp(-X_{0} / kT) \quad \text{Saha equation}$$

 $N_+ = \#$ of ions, $N_0 = \#$ of neutral atoms, $N_e = \#$ of electrons, A = constant, $X_0 =$ ionization potential from ground state

Boltzmann and Saha equations combined

Practical problem: calculate fraction of all atoms/ions in a given state, e.g., calculate fraction of all H atoms/ions in n=2 state of H.

$$\frac{N_2}{N} = \frac{N_2}{N_0 + N_+} = \frac{N_2/N_0}{1 + N_+/N_0}$$

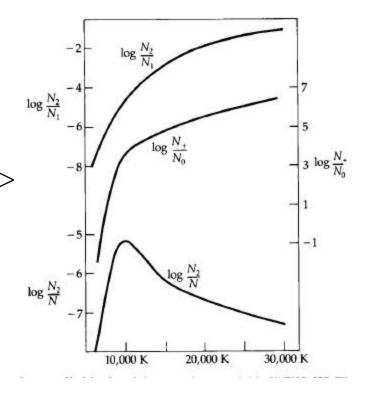
Now, in most cases $N_0 \approx N_1$

 $\Rightarrow \frac{N_2}{N} \approx \frac{N_2/N_1}{1 + N_+/N_0}.$ Use Boltzmann and Saha eqns =>

Note: T < 7000 K neutral

T > 10000 K ionized

 N_2/N peaks at ~ 10000 K. Balmer absorption lines strongest at this temperature.



Equilibrium Properties of Radiation

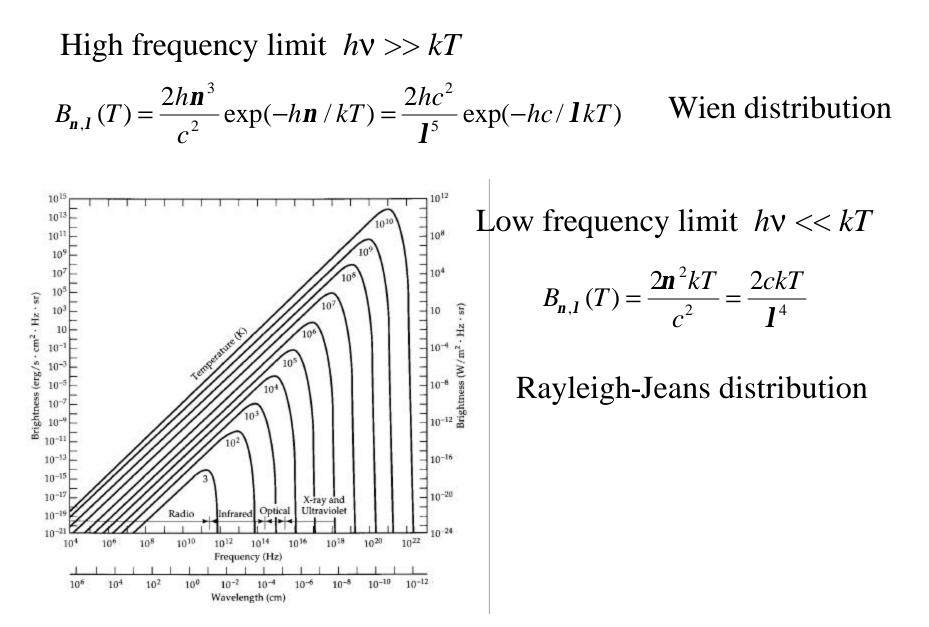
Strongly interacting atoms => continuous spectrum of radiation

Planck (1900) => emission/absorption in discrete packets -"photons". Planck's "Blackbody" Law of Radiation applies to any sufficiently opaque body (but not really "black"), where photons are continually absorbed and re-emitted (e.g., inside a star).

$$B_{I}(T) = \frac{2hc^{2}}{I^{5}} \frac{1}{e^{hc/IkT} - 1},$$
$$B_{n}(T) = \frac{2hn^{3}}{c^{2}} \frac{1}{e^{hn/kT} - 1},$$

where *B* is the emitted energy per unit time per unit wavelength (or frequency) per unit area (on emitting surface) per unit solid angle (on receiver).

Planck's Blackbody Radiation Law



Planck's Blackbody Radiation Law

<u>Wien's Law</u>: Peak intensity occurs at $\lambda_{max}T = 2.898 \times 10^{-3}$.

<u>Stefan-Boltzmann Law</u>: Total energy flux (energy/[time area]), i.e., integrated over all wavelengths and solid angles

 $F = sT^4$, where $s = 5.669 \times 10^{-8} \text{ W/m}^2 \cdot \text{K}^4$.

Application: Total power emitted by a star, $L = 4\pi r^2 \sigma T^4$.

Summary: important qualitative properties of a BB radiator

(1) emits some energy at all wavelengths

(2) a hotter object emits a greater proportion of its energy at shorter wavelengths; peak of spectrum at shorter wavelength

(3) a hotter object emits more power at all wavelengths than a cooler one

Measuring Temperature

Matter:

kinetic temperature - from thermal Doppler broadening excitation temperature - from Boltzmann equation ionization temperature - from Saha equation **Radiation:**

color temperature - from shape of Planck curve or Wien's Law effective (radiation) temperature - from Stefan-Boltzmann Law

Therefore, no unique measure of temperature, but all should be equal if <u>thermodynamic equilibrium</u> holds.