## Binary Stars

- Pairs of stars which move due to mutual gravitational attraction; orbit common center of mass
- $\sim 2 / 3$ of all stars are part of a binary or multiple system
- Crucial for determining stellar masses; also can yield information on radii, density, temperature, luminosity, rotation rate
- Reveal the importance of angular momentum in the star formation process


## Classification of Binaries

Visual binary - two stars resolved as separate points that orbit one another.

Astrometric binary - only one star is seen, but it wobbles in the sky, implying the presence of an unseen companion

Spectroscopic binary - an unresolved pair for which we see a periodic variation of the Doppler shift of spectral lines; can be double-lined, if both spectra observed, or single-lined, if only one spectrum observed

Eclipsing binary - periodic changes in the total light due to the stars eclipsing each other

## Visual Binaries

Earth's atmosphere limits resolution to $\Delta \theta<1$ ", so see binaries with large separation $a=>\operatorname{long} P$.


Observations of the motions of Sirius A and B, before and after center of mass motion (dashed line) is subtracted out.

## Visual Binaries - Analysis

Observe apparent (projected) elliptical orbit.
Measure $a$ in arcseconds ( $a$ "), $P$ in yrs.
If know distance $d$, then $a(\mathrm{AU})=a " d(\mathrm{pc})$
Apply Kepler's 3rd Law, $\quad P^{2}=4 \pi^{2} a^{3} / G\left(m_{1}+m_{2}\right)$.
If also see motion of each star relative to center of mass,
$\frac{m_{1}}{m_{2}}=\frac{r_{2}}{r_{1}}$
$\Rightarrow \quad$ get $m_{1}$ and $m_{2}$.
$m_{1}+m_{2}=\frac{4 \pi^{2}}{G} \frac{a^{3}}{P^{2}}$

## Mass-Luminosity Relationship

Determined from binary systems in which reliable mass values can be inferred.


Note that
$10^{-1} \leq M / M_{\text {Sun }} \leq 10^{2}$, but $10^{-4} \leq L / L_{\text {Sun }} \leq 10^{6}$ !

Approximate relations
$L \propto M^{\alpha}$, where $\bar{\alpha}=3.3$.
More specifically,
$\alpha=2.3$ for $M<0.43 M_{\text {Sun }}$,
$\alpha=4.0$ for $M>0.43 M_{\text {Sun }}$.

## Spectroscopic Binaries


(A)

(B)

Single-lined
Double-lined



Measure $K_{1}=v_{1} \sin i$ and sometimes $K_{2}=v_{2} \sin i$, where $i$ is the inclination angle between orbit plane and the plane of the sky.

## Spectroscopic Binaries - Analysis

Apply laws of orbital motion, using measured $K_{1}, K_{2}$, and $P$. Look at three cases:
(1) Double-lined, $i=90^{\circ}$ (edge-on), circular orbit <=> sinusoidal velocity curve: we observe $P, v_{1}, v_{2}$.

$$
\begin{aligned}
& P=\frac{2 \pi r_{1}}{v_{1}}=\frac{2 \pi r_{2}}{v_{2}} \Rightarrow r_{1}=\frac{P v_{1}}{2 \pi}, \quad r_{2}=\frac{P v_{2}}{2 \pi} \\
& \Rightarrow \quad a=r_{1}+r_{2}=\frac{P}{2 \pi}\left(v_{1}+v_{2}\right) .
\end{aligned}
$$

This leads to

$$
\begin{aligned}
& \frac{m_{2}}{m_{1}}=\frac{r_{1}}{r_{2}}=\frac{v_{1}}{v_{2}}, \\
& m_{1}+m_{2}=\frac{4 \pi^{2}}{G} \frac{a^{3}}{P^{2}}=\frac{P}{2 \pi G}\left(v_{1}+v_{2}\right)^{3} .
\end{aligned}
$$

## Spectroscopic Binaries - Analysis

(2) Double-lined, arbitrary $i$, circular orbit: observe $P, K_{1}=v_{1} \sin i$, $K_{2}=v_{2} \sin i$.
$\frac{m_{2}}{m_{1}}=\frac{r_{1}}{r_{2}}=\frac{v_{1}}{v_{2}}=\frac{K_{1}}{K_{2}}$ (1) (note $: \sin i$ cancels out)
Also:
$P=\frac{2 \pi r_{1}}{v_{1}}=\frac{2 \pi r_{1} \sin i}{K_{1}}=\frac{2 \pi r_{2} \sin i}{K_{2}} \Rightarrow r_{1}=\frac{K_{1} P}{2 \pi \sin i}, \quad r_{2}=\frac{K_{2} P}{2 \pi \sin i}$
$\Rightarrow \quad a=r_{1}+r_{2}=\frac{P}{2 \pi \sin i}\left(K_{1}+K_{2}\right)$.
$m_{1}+m_{2}=\frac{4 \pi^{2}}{G} \frac{a^{3}}{P^{2}}=\frac{P}{2 \pi G} \frac{\left(K_{1}+K_{2}\right)^{3}}{\sin ^{3} i} \Rightarrow\left(m_{1}+m_{2}\right) \sin ^{3} i=\frac{P}{2 \pi G}\left(K_{1}+K_{2}\right)^{3}$

Solve equations (1) and (2) for $m_{1} \sin ^{3} i$ and $m_{2} \sin ^{3} i$.

## Spectroscopic Binaries - Analysis

(3) Single-lined, arbitrary $i$, circular orbit: observe $P, K_{1}=v_{1} \sin i$.
$r_{1}=\frac{\nu_{1} P}{2 \pi}=\frac{K_{1} P}{2 \pi \sin i}$.
$a=r_{1}+r_{2}=r_{1}\left(1+m_{1} / m_{2}\right)=\frac{K_{1} P}{2 \pi \sin i}\left(1+m_{1} / m_{2}\right)$.
Also,
$m_{1}+m_{2}=\frac{4 \pi^{2}}{G} \frac{a^{3}}{P^{2}}=\frac{K_{1}^{3} P}{2 \pi G \sin ^{3} i}\left(1+m_{1} / m_{2}\right)^{3} \Rightarrow m_{2}^{3} \sin ^{3} i=\frac{K_{1}^{3} P}{2 \pi G}\left(m_{1}+m_{2}\right)^{2}$.
If $m_{1} \gg m_{2}$ and can estimate $m_{1}$, then
$m_{2} \sin i=\frac{K_{1} P^{1 / 3}}{(2 \pi G)^{1 / 3}} m_{1}^{2 / 3}$.
Yields a lower limit to $m_{2}$, the mass of the unseen companion. This method used to find planets too.

Planet Detection using Spectroscopic Method


Tinney et al. (2002)

Orbital Phase

## Eclipsing Binaries

$i=90^{\circ}$, circular orbit


Brightness

$2 R_{s}=v\left(t_{2}-t_{1}\right)=v\left(t_{4}-t_{3}\right)$,
$2\left(R_{s}+R_{l}\right)=v\left(t_{4}-t_{1}\right)$.
Also $\quad a=\frac{v P}{2 \pi} \Rightarrow \frac{R_{s}}{a}=\pi \frac{t_{2}-t_{1}}{P}, \frac{R_{l}}{a}=\pi \frac{t_{4}-t_{2}}{P}$.

## Eclipsing Binaries

$i \neq 90^{\circ}$, but not very far off.



Can determine $i$ from shape of light curve.

Note that an eclipsing binary (EB) is also likely a spectroscopic binary (SB).

Also, note that $\frac{\text { depth of primary }}{\text { depth of secondary }}=\frac{F_{\text {primary }} \times \text { area eclipsed }}{F_{\text {secondary }} \times \text { area eclipsed }}=\left(\frac{T_{\text {hotter }}}{T_{\text {cooler }}}\right)^{4}$.
Complementarity of eclipsing (EB) and spectroscopic (SB) data:
$\mathrm{EB} \Rightarrow R_{s} / a, R_{l} / a, i$
$\Rightarrow$ get $m_{1}, m_{2}, a, R_{l}, R_{s}!$
$\mathrm{SB}=>a \sin i, m_{1} \sin ^{3} i, m_{2} \sin ^{3} i$

## Close Binaries

Consider a binary system with short separation $a$ and period $P$.


Transform to a frame where the stars are stationary, i.e., a frame rotating at a rate $\Omega=2 \pi / P$. In this frame, $g_{\text {eff }}=g_{1}+g_{2}-\Omega^{2} r$, where $r$ is the distance to the $\mathrm{CM}, g_{1}$ and $g_{2}$ are the gravitational fields of the two stars.

A sideways figure-eight defines the two regions where $g_{1}$ and $g_{2}$ dominate, respectively. These regions are called the Roche lobes.

## Close Binaries



Three broad categories:
(A) detached system - Both stars are smaller than their Roche lobes
(B) semi-detached system - One star fills its Roche lobe and mass flows to the companion.
(C) contact system - Both stars fill their Roche lobes. The system is shrouded by a common envelope of material.

