ASTRONOMY 020

Problem Set \#19
Due: March 12, 2004

1. A pulsating star has mean radius R_{0}, maximum radial displacement ΔR, and pulsation period P.
(a) Assuming sinusoidal oscillations, write down an analytical formula for $R(t)$, the instantaneous radius R as a function of time t.
(b) Use the answer to (a) to calculate the maximum radial velocity (in km / s) of the star if $R_{0}=58.3 R_{\odot}, \Delta R / R_{0}=0.025$, and $P=3$ days.
2. A Cepheid variable in an external galaxy is observed to pulsate with a period of ten days. It's mean apparent visual magnitude is +18.0 . What is the distance to the galaxy if this is a Pop I Cepheid? (Use Figure 18-3 in the text. Also note that we ignore the effect of interstellar absorption.)
3. Write a paragraph about the Crab Nebula.

Practice problems:

1. Zeilik \& Gregory, Chapter 18, problem 5.

Answers: $d=260 \mathrm{pc}, M=-8.9$.
2. Zeilik \& Gregory, Chapter 18, problem 6.

Answers: $L_{\max } / L_{\min }=1.6 \times 10^{9}$ for $M_{\min }=+5 . L_{\max } / L_{\min }=1.0 \times 10^{8}$ for $M_{\min }=+2$.

