Magnetic Fields and the Formation of Cores and Disks

Shantanu Basu
Western University, London, Ontario, Canada
Collaborators: Glenn Ciolek (RPI), Wolf Dapp (Juelich), Nicole Bailey (Western), James Wurster (Western)

New Trends in Radio Astronomy in ALMA Era
Hakone, Japan
Tuesday, December 4, 2012
Star Formation and nonthermal motions in Taurus

sound speed
$c_s \approx 0.2 \text{ km/s}$

velocity dispersion
$\sigma \approx 0.6 \text{ km/s}$

$\sigma \approx 0.25 \text{ km/s}$

Onishi et al. (2002)
Magnetic Fields: Are Molecular Clouds Subcritical or Supercritical?

\[
\mu = \frac{\Sigma}{B} 2\pi G^{1/2}
\]

\[
\ll 1, \approx 1, \text{ or } \gg 1 ?
\]
Striations of gas emission consistent with magnetically-dominated envelope.

Goldsmith et al. (2008): Stellar mass only \(~1\%\) of total mass. Most of cloud is empty of "cores". Mass is mostly in the low density "envelope".

Palmierim et al. (2012).
Scenario

Supercritical high-density regions assembled by large scale flows/turbulence
\[\mu \approx 1 \text{ is interesting!} \]

For partially ionized sheet, with half thickness \(Z_0 \).

\[x_i = 10^{-7} \left(n_n / 10^4 \text{ cm}^{-3} \right)^{-1/2} \]

Cosmic ray ionization

\[\tau_{g,m} \approx 10 \frac{Z_0}{c_s} \]

Ambipolar diffusion time

\[\tau_{AD} \]

Fragmentation time scale

\[\tau_{g,m} = \frac{Z_0}{c_s} \]

dynamical time

Magnetic Fields and Origin of the CMF

\[\frac{\tau_{ni,0}}{t_0} = 0.2 \text{ (dotted line)} \]

\[\Lambdabar_{g,m} = \frac{\pi^2}{4} \sum \lambda_{g,m}^2 \]

Can vary dramatically even with a narrow range of \(\mu_0 \).

\[\lambda_{g,m} = 2\pi Z_0 \]

Standard value for CR ionized region

\[x_i = 10^{-7} \left(\frac{n}{10^4 \text{ cm}^{-3}} \right)^{-1/2} \]

Ciolek & Basu (2006), see also Bailey & Basu (2012)
Magnetic Fields and Origin of the CMF

Initial small amplitude perturbations. B is initially normal to sheet.

Periodic isothermal thin-sheet model.

Column density and velocity vectors (unit $0.5 \, c_s$)

Note irregular shapes with NO strong turbulence.

$\mu_0 = 0.5$

$x' = x / (2\pi Z_0)$, etc.

$\mu_0 = 2.0$

$\mu_0 = 1.1$

$\mu_0 = 10$
Two stage fragmentation

Ionization versus column density depth in a cloud – based on calculations of Ruffle et al. (1998)

Taurus Molecular Cloud (Onishi et al. 1998)
A transcritical cloud can start to fragment on long (~ Myr) time and (~pc) length scales, then undergo a subfragmentation on much smaller time and length scales once x_i drops to cosmic ray ionization level.

Clump fragmentation and core subfragmentation may occur in shaded regions.

See poster #49 by Nicole Bailey that also includes some simulation results.
Core Mass Function

Hydrodynamic case

Lognormal column density pdf

Lognormal core mass function

\[\lambda_{g,m} = \frac{2c_s^2}{G\Sigma} \]
Core Mass Function (MHD)

with magnetic field, flux freezing

also add ambipolar diffusion

Bailey & Basu (2013)
Core Mass Function (MHD)

Hydrodynamic

Ideal MHD

Non-ideal MHD

lognormal

broad tail

high mass truncation

Bailey & Basu (2013)
Hourglass Magnetic Fields

Recipe: large-scale background field + gravitational contraction + self-inductance.

Observation: NGC 1333 IRAS 4A, Girart et al. (2006)

Theory, e.g., Kudoh & Basu (2011)

Dashed lines are for flux-frozen model (extreme flaring of FL’s leads to braking catastrophe). Solid lines are for non-ideal MHD model (note relaxation of FL shapes within 10 AU).
Disk can form on small scales

At this time, Central mass $< 10^{-2} M_\odot$
Disk size $\approx 10R_\odot$

Dapp, Basu, and Kunz (2012)

The MB catastrophe!

Disk formation evidenced by:

- Toomre Instability
- Infall speed drops to zero
- Centrifugal balance

The MB catastrophe!
How to build large (low-mass) class II disks?

Potential problem: magnetic field dissipation zone only several AU in radius.

Solutions:

1. Disk formation may end with a small high-mass disk that grows at later times into a large low-mass disk due to angular momentum redistribution. For example

\[R_{disk,\,init} = 5 \text{ AU} \quad \text{and} \quad \frac{M_{disk,\,init}}{M_{star}} = 0.1 \]

leads to

\[R_{disk,\,final} \approx 500 \text{ AU} \quad \text{if} \quad \frac{M_{disk,\,final}}{M_{star}} = 0.01 \]

i.e., \(R_{d,\,final} \approx R_{d,\,init} \left(\frac{m_{disk,\,init}}{m_{disk,\,final}} \right)^2 \)

2. Late time disk formation epoch may occur with large centrifugal radius for outermost mass shells, since magnetic braking may be cut off by lack of envelope matter (Machida, Inutsuka, & Matsumoto 2011).

ALMA objective: characterize sizes of class 0 disks.
• Subcritical common envelope may explain lack of star formation in much of molecular cloud area
• Fragmentation may begin in transcritical regime, leading to clumps, then proceed to a second-stage cluster fragmentation event when UV shielding sets in
• Core Mass Function can be quite broad due to (transcritical) magnetic field strength distribution and ambipolar diffusion
• Core collapse initially accompanied by field-line dragging (hourglass pattern). But microphysics \rightarrow significant flux loss within several AU scale near center
• Theory predicts small centrifugal disk (~ 10 AU) in class 0 phase (ALMA target) and disk expansion or magnetic braking shut-off at late times to yield larger disk by class II phase