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ABSTRACT
If a transiting exoplanet has a moon, that moon could be detected directly from the transit it produces itself, or indirectly via
the transit timing variations (TTVs) it produces in its parent planet. There is a range of parameter space where the Kepler
Space Telescope is sensitive to the TTVs exomoons might produce, though the moons themselves would be too small to
detect photometrically via their own transits. The Earth’s Moon, for example, produces TTVs of 2.6 min amplitude by causing
our planet to move around their mutual centre of mass. This is more than Kepler’s short-cadence interval of 1 min and so
nominally detectable (if transit timings can be measured with comparable accuracy), even though the Moon’s transit signature
is only 7 per cent that of Earth’s, well below Kepler’s nominal photometric threshold. Here, we examine several Kepler systems,
exploring the hypothesis that an exomoon could be detected solely from the TTVs it induces on its host planet. We compare
this with the alternate hypothesis that the TTVs are caused by an non-transiting planet in the system. We examine 13 Kepler
systems and find 8 where both hypotheses explain the observed TTVs equally well. Though no definitive exomoon detection can
be claimed on this basis, the observations are nevertheless completely consistent with a dynamically stable moon small enough
to fall below Kepler’s photometric threshold for transit detection, and these systems warrant further observation and analysis.

Key words: methods: numerical – Moon – planets and satellites: detection.

1 IN T RO D U C T I O N

Most of the planets found by the Kepler Space Telescope have been
via the transit method (Borucki et al. 2010). However, additional non-
transiting planets have been discovered by examining the variability
of transit timings. Gravitational perturbations between planets can
result in deviations from perfectly Keplerian orbits, seen as transit
timing variations (TTVs, Agol et al. 2005; Holman & Murray 2005)
which can reveal the presence of otherwise undetected planets.

Here, we consider the role of a companion in orbit of a planet,
a companion which we term an exomoon, in producing TTVs. In
particular, we consider the parameter space where an exomoon could
produce TTVs while not producing a photometrically detectable
transit. We then examine the Kepler data set for such signals, and
discuss several planetary systems that exhibit TTVs consistent with
exomoons, and compare the hypothesis that these TTVs are caused
by an exomoon with the hypothesis that they are caused by another
planet in the system.

Exomoons have been studied in depth from a number of perspec-
tives. The role of exomoons as habitable worlds has been explored
by Hinkel & Kane (2013), Hill et al. (2018), and Martı́nez-Rodrı́guez
et al. (2019). The possible formation mechanisms of exomoons have
been examined by Barr & Bruck Syal (2017) and Malamud et al.
(2020).

� E-mail: cfox53@uwo.ca

That exomoons may induce TTVs upon their host planet has been
examined by other authors. The properties of TTVs generated by
hypothetical exomoons has been explored by Sartoretti & Schneider
(1999), Kipping (2009), and Heller et al. (2016). These papers were
theoretical in nature and did not examine observed light curves.
Szabó et al. (2013) searched for exomoons in the Kepler data set
by means of Fourier transforms of the entire transit timing data
set. No definitive exomoon detections were made. More recently,
Rodenbeck, Heller & Gizon (2020) examined exomoon indicators
from TTV, TDV, and TRV (transit timing, duration, and radius
variations, respectively), modelling under realistic conditions, but
did not apply these techniques to the Kepler data set.

The most prominent search for exomoons has been the HEK
(Hunt for Exomoons with Kepler (Kipping et al. 2013, 2014, 2015;
Teachey, Kipping & Schmitt 2017) project, which uses a photo-
dynamical approach, modelling the expected photometric signal of
an exoplanet–exomoon combination from transit to transit within a
Bayesian framework. However, no search to date has made a positive
identification of an exomoon. Arguably the best moon transit candi-
date to date comes from the HEK project: the Kepler-1625 system
(Teachey & Kipping 2018). However, alternative explanations for
the signal (Heller, Rodenbeck & Bruno 2019; Kreidberg, Luger &
Bedell 2019) have also been proposed, and Kepler-1625 remains an
unconfirmed and controversial exomoon candidate.

In this work, we examine two questions. The first is, could an
exomoon too small to generate a photometrically detectable transit
still create detectable TTVs? The answer is yes and we examine
the circumstances in detail in Section 2. The second is, does the
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Kepler data set contain TTVs signals consistent with those produced
by an exomoon below Kepler’s photometric detection threshold?
The answer is again yes, though the statistical validity of these
signals must be addressed with care. We discuss this further in
Sections 3–5.

While other searches have been primarily focused on finding
an exomoon transit signal (such as those of HEK, e.g. Teachey
et al. 2017), what makes this study unique is that we specifically
consider only exomoons that would be too small to create detectable
photometric (transit) signals. We will actually exclude from our
sample systems where the TTV signals are too large to be consistent
with photometrically unseen moons, concentrating solely on moons
lying in the niche of phase space where their TTVs are detectable
by Kepler, but their transits are not. As a result, this work does not
examine Kepler’s photometric data at all, and we will exclude from
consideration any exomoon candidates large enough to be easily seen
from their transit signals, tacitly assuming that these would have been
seen (if present) by earlier dedicated studies.

We examine two classes of models where the TTVs are created
by (1) another planet in the system and (2) a moon in orbit around
the planet, to determine which might provide a better fit to the TTV
signals seen in the Kepler data set. One constraint we impose on our
exomoon model is that the moon’s contribution to the transit signal is
small enough to remain undetected. To first order, Kepler is sensitive
to transiting bodies the size of the Earth orbiting a Sun-sized star
(Gilliland et al. 2011). We will consider a body, whether planet or
moon, with a transit confidence level equivalent to an Earth-sized
body orbiting a Sun-sized star, to be above Kepler’s photometric
sensitivity limit. Similarly, Kepler can detect TTVs of order the
interval between its short-cadence observations, or about one minute
(Borucki et al. 2010), which sets its TTV sensitivity limit. In practice,
the TTV sensitivity limit will be set by the accuracy to which the
transit timings can be determined and we will consider realistic
timing errors here. However, the net result is that for many Kepler
systems there is a region of parameter space where an exomoon
could create TTVs that are above Kepler’s TTV sensitivity limit
while having a cross-section that puts it below Kepler’s photometric
sensitivity. This is the scenario that we examine in this paper.

Initially, we also examined a third model with two moons orbiting
the planet in circular coplanar orbits. However, as will be discussed
later, this hypothesis resulted in systems that were highly unstable
and we did not find any viable two moon systems that could explain
the TTV patterns better than the other two models.

2 TH E O R E T I C A L BA S I S FO R M O O N - I N D U C E D
TTVs

In this section, we discuss the conditions under which an exomoon
could be detectable from its Kepler-derived TTVs even if it were
below that spacecraft’s photometric detection threshold. We use a
simplified model of a planet–moon system to model planetary TTVs
resulting from the moon, as illustrated in Fig. 1. The planet and
moon orbit their mutual centre of mass. In the absence of any other
influences, the centre of mass of the planet–moon system will orbit
the parent star with a fixed period. The transit timing of the planet
is then offset by an amount that depends on the orientation of the
planet–moon system during the transit. The TTV for single transit
for this simple model is expressed as:

TTV =
(

Pp

2πGM∗

)1/3
Mmapm

Mp + Mm

(1 − e2)

1 + e cos(f )
sin

(
ω + f − π

2

)
(1)

Figure 1. Simple model of planet–moon system.

where apm is the distance of the moon to the planet (not the
barycentre), f the true anomaly, and ω the argument of periastron
of the moon. These definitions are consistent with those of Kipping
(2009).

The moon necessarily orbits the planet with a period much shorter
than the period of the planet about the star because it must orbit within
the planet’s Hill sphere (Kipping 2009). Notwithstanding this, our
model will assume that the period of the moon is significantly greater
than the transit duration; that is that there is no motion of the planet
with respect to the moon–planet centre of mass during the transit. A
moon on too small an orbit could produce substantial reflex motion
of the planet during the transit, shortening or lengthening the transit
depending on the moon’s phase. This can have an impact upon the
measured transit centre and timing measurement, thereby making the
modelling more complex. However, we will see that in all the cases
we examine here, the hypothetical moon’s period is long enough that
such effects can be safely ignored.

As an example of the type of system we are examining here, apply-
ing equation (1) to the Earth–Moon system yields a TTV amplitude
of 2.58 min. This exceeds Kepler’s short-cadence interval of one
minute so is nominally detectable, though we do note that transit
timing uncertainties well below the cadence interval are possible as
demonstrated in Holczer et al. (2016). The Moon’s cross-section of
only 7 per cent of Earth’s puts it below Kepler’s photometric detection
threshold. We note that Earth orbits with a period of 365.26 d, which
would only produce four transits in the four-year Kepler data set. For a
confident detection of an exomoon, more transits would be needed. In
particular, our attempts to compare models by determining the best-
fitting parameters require, at a minimum, one transit per parameter
and ideally many more. TDVs, transit duration variations, could
potentially double the number of data points, but as will be seen
later, these have relatively high errors compared to their amplitude
and thus have limited utility. Though our own Earth–Moon system
may or may not be recoverable from the Kepler data set, it illustrates
the principle that, in some cases, Kepler is more sensitive to TTV
variations from exomoons than it is to their photometric signals. Fig. 2
shows the expected TTV pattern of an Earth–Moon system with an
error bar of one minute added, providing an illustration of the possible
signal.
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2380 C. Fox and P. Wiegert

Figure 2. Simulated ideal TTV pattern of an Earth–Moon analogue, with 1
min error bars.

While TTV signals of this magnitude and with low error are
relatively rare in the Kepler data set, hundreds do exist and can
provide valuable insights. We also note that as TTV strength is
linearly proportional to the moon’s mass and its semimajor axis
(equation 1), modest increases in either could produce a significantly
stronger TTV signal than what is produced by the Earth–Moon
system.

2.1 Detectability from TTVs versus transits

Before proceeding to a search of the Kepler data set, it will be useful
to construct a illustrative diagram of the parameter space which can
be used to assess whether candidate systems are broadly consistent
with our criteria.

We define our region of interest or the ‘green zone’ to be the
region where the transit signature of an exomoon would be below
Kepler’s photometric threshold, but the planetary TTVs induced by
such a moon would larger than the uncertainty in those TTVs. This
picture provides an informative first look at the parameter space.
Fig. 3 illustrates the region of interest (in green) using an Earth–
Moon analogue, where we have assumed a TTV sensitivity of one
minute, equal to Kepler’s short-cadence interval.

We will construct a similar but more realistic diagram for each
of our candidate systems based on its individual stellar and plan-
etary parameters. The lines in the diagram, which are described
below, represent the approximate location of various thresholds
related to our search. The green zone is the parameter space in
which an exomoon could produce TTVs while being too small
to be observed photometrically, and is where we will focus our
attention. Moon parameters that fall well outside of the green zone
will not be considered here. The lines in Fig. 3 and following
diagrams are:

(i) Equation (2) represents Kepler’s sensitivity to exomoon-
generated TTVs, expressed in terms of the moon’s parameters. This
is a restatement of equation (1), assuming low eccentricity moon
orbit, a fixed TTV sensitivity on the part of Kepler, and re-organized
to write the moon’s distance from the planet a function of the moon–
planet mass ratio.

apm = TTV

(
2πGM∗

Pp

)1/3(
1 +

(Mm

Mp

)−1
)

(2)

Equation (2) is shown by the yellow line in Fig. 3, where a TTV
sensitivity is 1 min is assumed for that case. When constructing this
diagram for our target systems, we take the TTV sensitivity to be

Figure 3. Parameter space of a Moon–Earth analogue. The diagonal yellow
line represents a TTV sensitivity of 1 min. Alternate sensitivity lines of 10 and
0.1 min are also shown for comparison. The horizontal red line represents the
orbital stability of the moon at 0.5 of the Earth’s Hill radius. The vertical blue
line is the Kepler photometric detection limit, using an Earth mass as proxy
for an Earth radius. A dotted horizontal line delimits where the moon orbital
period is equal to the planet transit duration: moons well above this line can
be considered stationary with respect to the planet during the transit. The grey
dot indicates Earth’s Moon. Being inside the green region, our Moon would
be nominally detectable by Kepler from its TTVs, but its transit would be
below Kepler’s photometric sensitivity.

the timing precision appropriate for each star; the average TTV error
from Holczer et al. (2016). This is typically on the order of 3 or
4 min in the systems we examine, and pushes this line upwards,
making the green zone smaller. To demonstrate the effect of TTV
sensitivity, alternative TTV sensitivity lines are shown on Fig. 3 as
well, corresponding to 0.1 and 10 min.

(ii) The red horizontal line in Fig. 3, expressed by equation (3),
represents one-half of the Hill radius of the planet. This serves as our
outer limit for the stability of exomoons.

a
∣∣

0.5 Hill
= 0.5ap

(
Mp

3M∗

)1/3

= 0.5

(
G(M∗ + Mp)Pp

2Mp

12π2M∗

)1/3

(3)

Numerical studies have shown that prograde moons are not stable
beyond about 0.3 RHill (Holman & Wiegert 1999) though retrograde
moons can survive out as far as 0.5 RHill (Nicholson et al. 2008). As a
result, any modelled fit to the TTVs that requires an exomoon above
the red line would be unstable. In practice, we restrict our searches
to less than 0.3 RHill to ensure that not only do the moons remain
bound to the planet, but their orbits do not vary strongly with time
(due to stellar gravitational perturbations), so that our assumption
of a fixed elliptical moon orbit is valid. The use of the Hill sphere
becomes questionable as the moon/planet mass approaches unity,
but it provides us with a useful zeroth-order limit: any moon with
an orbital radius of more than half the Hill radius is unlikely to be
stable.

(iii) The blue vertical line in Fig. 3, is expressed by equation (4)
and corresponds to an Earth-sized body transiting a Sun-sized star
with 29 ppm noise. We adopt this as representative of Kepler’s
photometric detection threshold for our initial survey of the parameter
space.

Mm

Mp

∣∣∣∣
threshold

=
(

M⊕
Mp

)(
R∗
R�

)3(
CDPP∗
29 ppm

)3/2

(4)

Here, the CDPP is interpolated to the specific transit duration of the
planet, using the Combined Differential Photometric Precision values
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in the Kepler Stellar tables (Thompson et al. 2018). This provides a
measure of the actual photometric uncertainty for the transit of each
planet. Each star’s CDPP value is compared to the typical CDPP
that Kepler achieved in its sample, 29 ppm (Gilliland et al. 2011). A
moon with a mass (and hence cross-section greater than an Earth–Sun
equivalent) would appear to the right of this line, and we will consider
it photometrically detectable in Kepler data. This detection limit is
expressed as the moon/planet mass ratio instead of just in terms of
the moon’s mass for consistency with the previous equations. We
assume a terrestrial planet density for simplicity though some targets
may be better described using a Neptune-like density, and that case
will also be explored.

We note that while the transit detection limit line expressed
by equation (4) may be placed at different values of Mm/Mp for
different systems, it always represents the same transit detection
threshold, adjusted for stellar radius and noise levels. We also note
that successful transit detections are subject to more factors than we
have included here; we use this limit as our first order guideline only;
it is not a hard limit.

(iv) The dashed horizontal line in Fig. 3 is the distance from the
planet where the moon’s period is equal to the transit duration of the
planet. A moon near or below this line moves significantly during
the transit; however our simplified model assumes little or no motion
of the moon relative to the planet during the transit. A moon near
or below this line may require more advanced modelling for reasons
discussed in Section 2, and we will only consider systems which lie
well above this line.

The four lines described above divide the parameter space in ways
which will help illustrate the properties of the different modelled
moon systems, and similar diagrams based on the appropriate stellar
and planetary properties of various Kepler systems will be discussed
in more detail later.

2.2 Transit duration variations

Though valuable sources of information, TTVs from exomoons
are subject to a degeneracy between the mass and semimajor axis
of the exomoon. TDVs can be brought to bear to resolve this
degeneracy (Kipping 2009; Heller et al. 2016) and we incorporated
the TDVs provided by Holczer et al. (2016) as part of our exomoon
analysis.

All TDVs in our sample were found to be comparable in magnitude
to their errors. The ratio of standard deviation of the TDVs to the
average error of the TDVs is typically just above 1 (see Section 3).
While small, these TDVs may still be useful by providing constraints;
any proposed model that would create a large TDV could be ruled out.
The TDV signal is given as a fractional value, and can be described
by:

TDV

〈D〉 = PpMm

2πap

[(
G

(Mp + Mm)

)
1 + e2 + 2e cos f

apm(1 − e2)

]1/2

cos θ (5)

where θ = ω + f − φ, and φ = arctan( 1+e cos f

e sin f
), apm is the

semimajor axis of the planet–moon (not moon-barycentre) orbit,
ap is the semimajor axis of the planet around its parent star, f
is the true anomaly of the moon about the planet, and ω the
argument of periastron of the moon’s orbit. This equation is con-
sistent with the derivation by Kipping (2009). For comparison,
our Moon produces a fractional duration variation upon Earth
of 0.000418.

3 TA R G E T SE L E C T I O N

Having determined that there is a region of phase space where
exomoons could produce TTVs without appearing above the noise
level in the system’s Kepler light curve, we proceed to ask whether
there are any signals consistent with such exomoons in the Ke-
pler data. We make use of the DR25 data1 (Thompson et al.
2018), retrieved from the NASA Exoplanet Archive (Akeson et al.
2013).

To find a list of targets for analysis, we start with the 2599
systems with TTVs reported by Holczer et al. (2016), but restrict
our analysis to 779 systems for which TDVs were also calculated.
We also require at least 10 measured transits. This is determined from
the need for sufficient data to fit the parameters of our models. The
planet hypothesis has the most free parameters (10). As a result, we
require a minimum of 10 Kepler-observed transits so as to provide
sufficient constraints to that model. Given Kepler’s primary mission
lifespan, ≥10 transits corresponds to a period of approximately 160 d
or less (assuming no missing transits in the data). This condition
effectively restricts our candidates to hotter planets orbiting relatively
close to their star. This last criterion reduces our sample to 618
systems.

We will also require that the planet (1) either have a status of
‘confirmed’ or a disposition score of 1 from NASA’s Exoplanet
Archive (Akeson et al. 2013; Thompson et al. 2018); and (2) have no
known siblings (that is, there is only one known planet in the system).
Though there is no physical reason not to expect moons simply
because there is another planet present, that planet may generate
TTVs in and of itself, and so this second criterion simplifies our
analysis, though undetected planets may still be present. With these
two conditions, our sample is reduced to 272 systems.

Here, we define the signal-to-noise ratio (S/N) of the TTVs to be
the ratio of standard deviation of the TTVs to their average uncer-
tainty. These quantities are calculated with all outliers identified by
Holczer et al. (2016) removed. In particular the reported uncertainties
in the transit timings are used, not any theoretical value derived from
the short-cadence timing interval. However, we note that if there are
unmodelled timing errors in the catalogue, the uncertainties could
be larger than reported. To extract the strongest signals, we required
the S/N to be at least 1.5, with additional tests of the TTVs statistical
significance to be undertaken in a later step. This leaves us with 40
systems.

The next step is to exclude targets whose TTV signals require a
moon too large to have plausibly remained undetected photometri-
cally by Kepler. Recall that we are assuming in this work that such
large moons would have been revealed by other studies. In particular
we note that Teachey et al. (2017), using TTVs to create phase-folded
light curves to search for evidence of exomoons among the Kepler
systems, did not report any findings, so any existing moons must be
below Kepler’s photometric threshold.

To exclude transit-visible moons, we consider the minimum moon
mass required to induce the moon’s TTV amplitude (by using a
coplanar and circular version of equation (1), solving for Mm) and
comparing that to the photometric detectability limit of the star (using
equation (4)). This comparison allows us to remove systems with
TTVs too large to be consistent with undetected exomoons. This
leaves us with 15 targets.

1Kepler DR25 release notes: https://archive.stsci.edu/missions-and-data/ke
pler/documents/data-release-notes
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Table 1. Measured properties of target systems.

KOI Kepler Spec Star mass Star radius CDPP
ID ID type (M�) (R�) (ppm)

63.01 63b G5 0.943+0.051
−0.069 0.886+0.120

−0.051 63.5

268.01 F7∗ 1.175+0.058
−0.065 1.359+0.062

−0.068 25.6

303.01 517b G6V 0.871+0.071
−0.043 1.023+0.142

−0.142 38.1

318.01 522b F7∗ 1.486+0.126
−0.154 1.927+0.353

−0.431 90.8

1302.01 809b G0∗ 1.050+0.124
−0.138 0.962+0.297

−0.099 95.7

1472.01 857b G5∗ 0.966+0.050
−0.055 0.938+0.127

−0.054 117.7

1848.01 978b F6IV 1.097+0.073
−0.066 1.184+0.193

−0.123 61.9

1876.01 991b K5∗ 0.584+0.031
−0.027 0.580+0.026

−0.029 168.9

1888.01 1000b F6IV 1.406+0.086
−0.086 1.467 +0.24

−0.111 97.4

1925.01 409b K0 0.902+0.050
−0.055 0.888+0.036

−0.036 109.7

2469.01 K2∗ 0.774+0.048
−0.028 0.803+0.028

−0.060 143.1

2728.01 1326b F4∗ 1.535+0.219
−0.267 2.632+0.471

−0.875 100.7

3220.01 1442b F7∗ 1.323+0.098
−0.088 1.401+0.263

−0.132 73.7

Notes:. All values are from Mathur et al. (2017), except spectral types are
from Simbad (Wenger et al. 2000). Spectral types indicated with an ∗ are
estimates based on effective temperature. CDPP values are interpolated from
Kepler Stellar Tables to the specific transit duration of the planet.

Table 2. Planet properties estimates.

Avg
TTV

Radius Mass Average period error
KOI (R⊕) (M⊕) (d) (min)

63.01 5.89+0.57
−0.52 28.84+23.64

−12.62 9.434 ± 0.00004 9.38

268.01 3.02+0.14
−0.14 9.33+7.65

−4.08 110.37838 ± 0.00069 3.10

303.01 2.57+0.42
−0.23 7.59+6.21

−3.42 60.92833 ± 0.00018 3.11

318.01 6.17+1.42
−0.92 32.36+36.82

−15.38 38.584780 ± 0.000086 2.39

1302.01 3.24+0.75
−0.48 10.96+9.93

−5.08 55.639286 ± 0.000589 10.63

1472.01 6.76+0.65
−0.59 38.02+34.42

−17.13 85.351419 ± 0.000191 2.34

1848.01 2.69+0.47
−0.29 8.13+7.01

−3.66 49.622065 ± 0.000426 9.38

1876.01 2.39+0.17
−0.11 6.61+4.87

−2.81 82.534607 ± 0.000595 6.61

1888.01 4.68+0.57
−0.51 19.95+16.36

−8.99 120.01918 ± 0.000650 5.21

1925.01 1.0+0.05
−0.05 1.00+0.78

−0.34 68.95832 ± 0.00045 5.01

2469.01 2.40+0.17
−0.16 6.61+5.14

−2.81 131.187139 ± 0.002623 15.50

2728.01 5.25+1.51
−0.98 24.55+26.74

−11.96 42.35120 ± 0.00035 7.26

3220.01 3.80+0.57
−0.41 14.13+12.17

−6.37 81.41635 ± 0.00042 4.68

Notes: Periods and average TTV errors computed using data from Holczer
et al. (2016). Radius and mass estimates (including 1σ errors) from Chen &
Kipping (2018)

The remaining systems are now examined more carefully for
their statistical significance. Weak TTV signals could be produced
spuriously by noise and these should be excluded. We run a simple
Monte Carlo test. Consider a Kepler system that has N transits, a
typical transit timing uncertainty σ and an S/N of S. Sets of N random
deviates were chosen from a Gaussian distribution with a standard
deviation of σ , and from these the probability of achieving an S/N
of S by chance determined. Any systems whose TTV signals have
a chance greater than 1 in 5000 of being generated spuriously are
excluded (recall our initial sample size is 2599). We find that two of
these systems fail this test. Of the remaining 13 targets. we can have
high confidence that their TTV signal is not spurious.

The 13 systems remaining are: KOI-63, KOI-268, KOI-303, KOI-
318, KOI-1302, KOI-1472, KOI-1848, KOI-1876, KOI-1888, KOI-

Table 3. S/N of target systems TTVs and TDVs.

TTV TTV TDV TDV
Std dev Avg err TTV Std dev Avg err TDV

KOI (min) (min) S/N (min) (min) S/N

63.01 23.10 9.38 2.46 0.080 0.058 1.38
268.01 7.33 3.10 2.37 0.019 0.009 2.16
303.01 4.85 3.11 1.56 0.020 0.018 1.08
318.01 9.11 2.39 3.81 0.015 0.008 1.87
1302.01 19.02 10.63 1.79 0.055 0.056 0.97
1472.01 3.88 2.34 1.66 0.023 0.013 1.74
1848.01 23.10 9.38 2.46 0.080 0.058 1.38
1876.01 20.70 6.61 3.13 0.145 0.054 2.66
1888.01 9.56 5.21 1.84 0.019 0.016 1.13
1925.01 7.87 5.01 1.57 0.061 0.064 0.96
2469.01 37.45 15.50 2.42 0.139 0.099 1.40
2728.01 12.38 7.26 1.71 0.045 0.035 1.31
3220.01 7.82 4.68 1.67 0.021 0.014 1.48

Notes: All values computed from Holczer et al. (2016) data.

1925, KOI-2469, KOI-2728, and KOI-3220. These systems are
summarized in Tables 1– 3. At this point, these targets have TTVs
roughly consistent with those expected from unseen exomoons, but
whether the TTV/TDV pattern is reproducible in detail is to be
determined by our subsequent simulations.

4 ME T H O D S A N D S E T U P

4.1 Simulating systems and finding parameters

To examine the hypothesis that the TTVs and TDVS observed by
Kepler were produced by an exomoon, we model the TTVs and TDVs
induced by either one or two exomoons in orbit around the planet.
Our analysis employed two publicly available software packages.
The first was TTVFAST (Deck et al. 2014) which simulates the orbits
of the planets around a star and calculates the TTVs resulting from
planetary gravitational interactions. This code was used to assess the
competing hypothesis that the observed TTVs were induced by a
non-transiting planet. The second package was MULTINEST (Feroz,
Hobson & Bridges 2009), (which we used via its PYTHON interface,
PYMULTINEST, Buchner et al. 2014), a Bayesian Inference tool which
we used to search the parameter space for possible solutions for both
the exomoon and exoplanet hypotheses.

For each system, the observed transit times and durations come
from Holczer et al. (2016). Those points (and only those points) they
flag as outliers are removed. The quality of fit for each simulation is
based on the usual χ2 value, which is converted to a log-likelihood
value for MULTINEST. For the exomoon hypothesis, both the TTVs
and TDV were fitted. For the exoplanet hypothesis only the TTVs
were fitted, as these were sufficient to demonstrate the plausibility of
an additional planet as a competing hypothesis.

4.2 System stability

As part of our analysis, systems that showed reasonable TTV and/or
TDV fits for either the exomoon or additional planet models were
further tested for long-term stability. The stability simulation codes
used different algorithms for the case where only planets were
included, and ones that included moons. The code used for the purely
planetary case is a symplectic one based on the Wisdom–Holman
algorithm (Wisdom & Holman 1991). This code uses a time-step
less than 1/20th of the period of the innermost planet in all cases, and
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Exomoons from TTVs 2383

includes post-Newtonian general relativistic effects. This is the same
code as used in Fox & Wiegert (2019). In cases where the stability
of moons is examined, the RADAU15 (Everhart 1985) algorithm is
used, with a tolerance of 10−12.

These stability studies provide an additional check on our results,
as some planet and/or moon parameter values which provide good
matches to the TTVs over the course of Kepler’s lifetime may be
unstable on longer times, and are thus unlikely to represent the
real configuration of these systems. All planet hypothesis results
discussed in this work were found to be in stable configurations
over 10 million years, so we cannot exclude the additional planet
hypothesis on the basis of system instability. The single-moon
hypothesis results discussed later were all found to be stable for
at least 100 (Earth) years, which corresponds to 300 000–5 million
moon orbits, depending on the system.

Stability is of particular concern with regards to the two-moon
models which we ultimately did not pursue. The analyses of Gladman
(1993) and Chambers, Wetherill & Boss (1996) on the stability of
multiplanet systems are likely approximately applicable here. Even
though the stability of moons is really quite a different problem,
our restriction to moons orbiting inside 0.3 RHill means that stability
results for planetary systems are likely to provide a useful guide.
Those authors find that stability (more precisely Hill stability, that
is the absence of close encounters, but in practice these encounters
result in the ejection of one or both of the moons) of a two moon
system is only expected where the moons are more than 2

√
3 mutual

Hill radii apart. Combining the planetary 0.3 RHill condition with
the lunar 2

√
3 mutual Hill radii results in a significant restriction

to our model. The need for the moon to generate significant TTVs
tends to favour models with a large moon near 0.3 RHill, and the
resulting large mutual Hill radius forces the second moon to be very
near the planet. The TTVs then are primarily driven by the outer
moon, not dissimilar to the single moon scenario and providing
little improvement to the fit. In addition, this configuration always
proved to be rapidly unstable. It is conceivable that configurations
of moons in mean-motion resonance with each other could stabilize
themselves, we do not examine resonant configurations here. While
multiple exomoons could certainly exist around exoplanets, the size
required to produce the TTVs of our sample systems preclude the
existence of multiple massive moons, and we do not examine the
multiple moon scenario further.

4.3 Parameters and priors

The two models (exomoon versus additional planet) have a different
set of priors and allowed parameter ranges. The mass of the known
transiting planet is taken to be fixed in both cases, with the nominal
mass taken from Chen & Kipping (2018).

4.3.1 Exomoon hypothesis priors

When considering the exomoon model, the planet is taken to have
a circular orbit around the star. The moon is assumed to orbit the
planet in the same plane that the planet does the star; any difference
between these planes results in a mass-inclination degeneracy. Thus,
our derived mass results can be considered as minimum masses. The
moon is also taken to orbit in the same (prograde) direction as the
planet. Similar TTVs and TDVs could be created by a retrograde
moon and such moons could be stable out to larger radii (see
Section 2.1). Nevertheless, we choose prograde moons as the more
likely and more conservative assumption, since we cannot distinguish
the two cases from our data.

The other parameters are the mass of the moon, its semimajor
axis, mean anomaly, eccentricity, and argument of periastron, for a
total of five parameters. The moon is allowed to have a non-circular
orbit, but stellar gravitational perturbations are ignored; its orbit is
considered fixed. The stability simulations of exomoon candidates
(discussed in Sections 4.2 and 5) showed only small changes to the
moon orbits during the time examined, so this assumption is valid.

For the moon hypotheses, the moon mass prior was uniform from
zero though to a maximum value equal to the planet’s mass. While
this choice runs against some of our actual prior knowledge about the
system, that is, that moons have not been detected photometrically
within them despite extensive searches, it ensures we cover the full
range of possible masses. Because of the degeneracy between the
moon’s mass and semimajor axis, we represent the greater likelihood
of a smaller and farther-out moon through a triangular prior on the
semimajor axis. Such a prior also assists in keeping the moon above
the duration-period limit where our model would break down. This
triangular semimajor axis prior has a probability density of zero at the
planet, and a linearly increasing probability density up to a maximum
at 0.3 Hill (this latter limit is chosen for reasons of stability as dis-
cussed in Section 2.1). Note that this choice of prior does not affect the
quality (that is, the χ2) of any particular fit, though it does influence
MULTINEST’s choices and the resulting posteriors towards larger apm.

The prior distributions for the remaining moon orbital elements
were all uniform. Eccentricity was allowed to go as high as 0.5, and
the angular elements could run from 0◦ to 360◦.

4.3.2 Exoplanet hypothesis priors

When examining the additional planet model, there are a total of 10
parameters. Each planet has seven parameters: six orbital elements
plus its mass. The known transiting planet has three parameters
known to high precision: the period, inclination, and longitude of
the ascending node, and we use a fixed mass, the nominal value from
Chen & Kipping (2018), to remove one additional parameter. The
inclination (with respect to the planet of the sky) must be near 90◦ or
else a transit would not be observed. Slight deviations in inclination
have minimal effect on the observed TTVs (Agol et al. 2005) so we
set the inclination to 90◦ for the known planet. Finally, the longitude
of the ascending node, while not known in a true sense, can be set
as our reference orientation of 0◦, leaving three orbital elements.
The second hypothesized new planet has nothing known about it,
so it has seven parameters to be fit: six orbital parameters plus its
mass. This means a total of 10 parameters to fit the additional planet
hypothesis. In all cases, the proposed new planet had a period prior
ranging from 1 d to beyond the 4:1 resonance outside of the known
planet. The mass prior upper limit was 1500 M⊕ (approximately 5
Jupiter masses). The mean anomaly prior ran from 0◦ to 360◦. The
eccentricity prior ran from 0 to 0.5. The ascending node prior was
allowed to vary uniformly from −45◦ to + 45◦. The inclination prior
was allowed to vary from 45◦ to 135◦ and was uniform in i (not cos i).
All other priors were uniform.

5 R ESULTS

MULTINEST parameter-fitting simulations were performed for each
model (exomoon and additional planet) at least three times for
each system, to help ensure we found the best solution and not a
local minimum. Here we report both the best-fitting results as well
as the Bayesian posteriors for the runs that resulted in the lowest
χ2. The model χ2 values are occasionally less than (but always of
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2384 C. Fox and P. Wiegert

Figure 4. TTVs and TDVs of target systems.

order) unity, suggesting ‘overfitting’ (either too many parameters or
underestimated errors) in some cases.

Each set of model parameters (for both the additional planet and
exomoon hypotheses) also had to be stable in long-term dynamical
simulations (see Section 4.2). Configurations that were not stable
were to be disregarded, but all exomoon and additional planet models
reported on here proved dynamically stable over the time-scales
tested.

Eight systems are assessed to be consistent with exomoon-
generated TTVs, with five others being excluded for various reasons
to be discussed below. The observed TTVs, TDVs, and associated
errors for all 13 systems examined are shown in Fig. 4. Comparison
of the modelled TTVs with the observations are shown separately
for each candidate (in order of KOI number) below.

Full results for both best-fitting parameters and Bayesian posteri-
ors are included in the Appendix A.
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Exomoons from TTVs 2385

Figure 5. Quality of fit and sensitivity plot for KOI-268.01. In the TTV and
TDV plots, the black points are the observed TTVs from Kepler (including
error), the blue diamonds show the model results of the planet hypothesis, and
green dots indicate those for the moon hypothesis. In the sensitivity plot, the
white diamond is the best-fitting solution and the black dot is the peak of the
posterior distribution with the extended lines indicating the 1σ uncertainty to
either side.

5.1 Best exomoon candidate systems

5.1.1 KOI-268

Spectral type F7 Planet period 110.38 d
Star radius 1.36 R� Planet radius 3.0 R⊕
Star mass 1.18 M� Planet mass 9.3 M⊕

CDPP (12.2 h) 25.6 ppm Avg TTV err 3.1 min

KOI-268 is an unconfirmed target (and hence has no Kepler
designation), but has a disposition score of 1 from NASA’s Exoplanet
Archive (Akeson et al. 2013; Thompson et al. 2018), indicating there
is high confidence that this is an actual planet. It has one of the
highest S/N (standard deviation/average error) in both its TTVs and
TDVs. It also orbits the least noisy star in our sample, with a CDPP
of less than 26 ppm.

The additional planet hypothesis produces a better TTV fit than the
exomoon hypothesis, with a reduced χ2 value of nearly 0.6 compared
to 1.5. However, much of the difference in these values is attributable
to a single data point, transit 3, which shows a particularly large
TTV value more than double any other. This transit also produces an
abnormally low TDV. Neither hypothesis can reproduce this transit,

Figure 6. Quality of fit and sensitivity plot for KOI-303.01. The symbols
used are the same as in Fig. 5.

but the planet simulation gets closer to the TTV than the moon
simulation. The best-fitting moon is nearly 1 M⊕ in size, but due to
this star’s large size, the moon is well below Kepler’s photometric
sensitivity and in the green zone of the sensitivity plot (Fig. 5).
Given that both hypotheses give reduced χ2 ∼ 1, neither hypothesis
is statistically favoured over the other.

5.1.2 KOI-303

Spectral type G6V Planet period 60.93 d
Star radius 1.02 R� Planet radius 2.6 R⊕
Star mass 0.87 M� Planet mass 7.6 M⊕

CDPP (6.3 h) 38.1 ppm Avg TTV err 3.1 min

KOI-303.01 (Kepler-517b) has the second smallest TTV amplitude
of our candidates, with no TTV larger than 10 min. Even though it
has one of the lowest average errors in the TTV data, at only 3.1 min,
the TTV S/N is the lowest of our sample at 1.56.

We find that both hypotheses can provide reasonable fits, with
reduced χ2 values less than 1. The moon hypothesis requires a moon
mass of approximately 0.36 M⊕ at an orbital distance of 0.28 RHill.
At that mass, assuming a bulk density equal to Earth, the expected
radius of this moon would be ≈0.65 R⊕, putting it in the green zone
as shown on the sensitivity plot (Fig. 6). Like KOI-268, the posterior
suggests an even lower mass value. We conclude that the TTVs of
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2386 C. Fox and P. Wiegert

KOI-303.01 are equally well explainable by a moon as a sibling
planet.

5.1.3 KOI-1302

Spectral type G0 Planet period 60.93 d
Star radius 0.96 R� Planet radius 3.2 R⊕
Star mass 1.05 M� Planet mass 11.0 M⊕

CDPP (7.3 h) 95.7 ppm Avg TTV err 10.6 min

KOI-1302.01 (Kepler-809b) has the second highest average TTV
error, but has one of our larger amplitudes resulting in a moderate
S/N value.

We find that both planet and moon hypotheses can provide good
fits. The planet’s χ2 value is nominally lower at 0.5 compared to
0.8, though this may just be the result of the additional parameters
available in the planet model. The moon hypothesis requires a moon
mass of approximately 2.9 M⊕ at an orbital distance of 0.28 RHill

(Fig. 7). Such a mass straddles the boundary of Super-Earths and
Mini-Neptunes, so its density becomes problematic. The solid blue
line on Fig. 7 assumes a terrestrial density, while the dashed blue
assumes a Neptune-like density. A lower density moon has a reduced
green zone, as its cross-section is larger for a given mass. We would
expect a low-density moon massive enough to generate the TTVs
to be visible in transit, whereas a terrestrial moon of the same mass
would be below the photometric limit. We conclude that the TTVs
of KOI-1302.01 are equally well explainable by a terrestrial moon
as a sibling planet, but are not the result of a moon of Neptune-like
density.

5.1.4 KOI-1472

Spectral type G5 Planet period 85.35 d
Star radius 0.94 R� Planet radius 6.8 R⊕
Star mass 0.97 M� Planet mass 38.0 M⊕

CDPP (6.8 h) 118 ppm Avg TTV err 2.3 min

KOI-1472.01 (Kepler-857b) is our largest planetary target, with a
nominal mass of 38 M⊕, more than double Neptune. It also has the
lowest average TTV error, at only 2.3 min, despite orbiting one of
the noisier stars.

We find that both hypotheses can provide good fits, though
the planet’s reduced χ2 value is lower, 0.3 versus 0.9. There is
significant difference between the best-fitting values and the nominal
posterior values of the mass (1.6 and 0.7 M⊕, respectively), but
both are well inside of the green zone as indicated on Fig. 8. This
discrepancy results from a difference in the eccentricity. The best
fit is found with an eccentricity of nearly 0.5, easily our most
eccentric model fit. However the posteriors centre around a lower
eccentricity and lower mass solution. In terms of mass ratios, this
moon would be the smallest in our sample. The best-fitting moon–
planet mass ratio is 0.043, nearly a factor of 4 greater than the
Earth–Moon system. However, the peak of the mass posterior gives
a moon-planet mass ratio of only 0.018. We conclude that the
TTVs of KOI-1472.01 are explainable by either a moon or a sibling
planet.

Figure 7. Quality of fit and sensitivity plot for KOI-1302.01. The symbols
used are the same as in Fig. 5. The dashed blue line represents the detection
threshold when assuming a Neptunian density rather than terrestrial.

5.1.5 KOI-1888

Spectral type F6IV Planet period 120.02 d
Star radius 1.47 R� Planet radius 4.7 R⊕
Star mass 1.41 M� Planet mass 20.0 M⊕

CDPP (11.6 h) 97.4 ppm Avg TTV err 5.2 min

KOI-1888.01 (Kepler-1000b) is a confirmed planet orbiting a
subgiant F star, and the TTV pattern has our second highest S/N.
We obtained excellent fits from both model hypotheses. The planet’s
reduced χ2 is a bit higher than the moon’s (0.88 versus 0.68), but
both are less than 1. The best-fitting moon is 1.5 Earth in mass, and
in conjunction with the subgiant star, the best-fitting moon is inside
the green zone of the sensitivity plot (Fig. 9). The posterior places
the moon at slightly smaller mass, farther inside the green zone.
Thus, we conclude these TTVs are as well fitted by a moon as by an
additional planet.

5.1.6 KOI-1925

Spectral type K0 Planet period 68.96 d
Star radius 0.89 R� Planet radius 1.0 R⊕
Star mass 0.90 M� Planet mass 1.0 M⊕

CDPP (3.1 h) 110 ppm Avg TTV err 5.0 min
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Exomoons from TTVs 2387

Figure 8. Quality of fit and sensitivity plot for KOI-1472.01. The symbols
used are the same as in Fig. 5.

KOI-1925.01 (Kepler-409b) is our candidate most comparable to
Earth in size and mass, with nominal values of 1.0 Earth in both
values (Chen & Kipping 2018). Because this planet is easily the
smallest of our candidates the transit depth of this system is also the
least, at 0.012 per cent (120 ppm).

The reduced χ2 values are less than 1 for both planet and moon
hypotheses (0.66 and 0.62 respectively). As seen in Fig. 10, our
algorithm found the best-fitting moon mass of about 0.3 M⊕ in a
close orbit just over 0.2 Hill. This is physically the smallest moon of
our set, but as the planet is only 1 M⊕, it constitutes are rather high
moon–planet mass ratio. However, as the posteriors show there is a
wide range of possible masses below this value. If this moon’s mass
was near the lower end of the posterior, then it would be comparable
in its mass ratio to Earth as Charon is to Pluto (0.13 versus 0.12). This
is our smallest potential moon, though would still be significantly
more massive than our own moon by a factor of 10. We conclude
that a moon is a legitimate hypothesis, but the planet hypothesis is
just as compelling.

5.1.7 KOI-2728

Spectral type F4 Planet period 42.35 d
Star radius 2.63 R� Planet radius 5.3 R⊕
Star mass 1.54 M� Planet mass 24.6 M⊕

CDPP (7.8 h) 101 ppm Avg TTV err 7.3 min

Figure 9. Quality of fit and sensitivity plot for KOI-1888.01. The symbols
used are the same as in Fig. 5.

KOI-2728.01 (Kepler-1326b) is the extreme of our sample in
several categories. The host star is the hottest and most massive of our
candidates and has a significantly larger radius than any other. The
planet is the largest in estimated radius and mass of our candidates.
Because of the star’s size, this massive planet only gives the third-
lowest transit depth of our sample.

The reduced χ2 values for both planet and moon hypotheses are
well below 1 (0.43 and 0.75, respectively). The best-fitting moon is
super-Earth sized, at 6 M⊕, the largest of any of our exomoon fits and
suggesting a lower density. But the subgiant nature of the star, with a
radius more than 2.6 times that of our sun, combined with one of the
highest CDPP values in our sample, makes this a more difficult transit
detection than its mass would otherwise suggest. Fig. 11 shows our
standard detection threshold assuming a terrestrial density, but even
with a Neptunian density (the dashed blue line), this body would still
be well below the detection limit. We conclude these TTVs could be
induced either by a massive moon or by a sibling planet.

5.1.8 KOI-3220

Spectral type F7 Planet period 81.42 d
Star radius 1.4 R� Planet radius 3.8 R⊕
Star mass 1.3 M� Planet mass 14.1 M⊕

CDPP (14.2 h) 73.7 ppm Avg TTV err 4.7 min
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2388 C. Fox and P. Wiegert

Figure 10. Quality of fit and sensitivity plot for KOI-1925.01. The symbols
used are the same as in Fig. 5.

KOI-3220.01 (Kepler-1442b) is another planet around a large hot
star. The planet is our second largest candidate, and may resemble
Uranus (3.8 and 14 M⊕). Its orbital period of 81 d is right in the middle
of our sample. This planet shows a TTV pattern similar to KOI-
1925.01, but with slightly lower error (4.6 versus 5.0 min). Unlike
KOI-1925, the TDV pattern of KOI-3220 is one of the strongest,
showing significant scatter across the entire range.

The reduced χ2 values for both hypotheses are well below unity, at
0.57 and 0.83 for the planet and moon hypotheses respectively. The
best-fitting moon hypothesis requires a mass of just over 1.6 M⊕,
residing at a distance of 0.2 RHill. Against a Sun-sized star, such a
moon would produce a discernible transit, but this 1.4 R� moderately
noisy star shifts the detection threshold significantly. As a result, the
moon is well inside the green zone of the sensitivity plot (Fig. 12).
The best fit is near the threshold, but the posteriors indicate that a
smaller moon farther out is possible, and it is would be well below
the nominal detection limit. We thus conclude that the TTVs of KOI-
3220.01 could be caused by a large moon, but we cannot rule out a
planet as the cause.

5.2 Poor exomoon candidate systems

5.2.1 KOI-1848

Spectral type F6IV Planet period 49.6 d
Star radius 1.18 R� Planet radius 2.7 R⊕
Star mass 1.10 M� Planet mass 8.1 M⊕

CDPP (7.2 h) 61.9 ppm Avg TTV err 9.4 min

KOI-1848.01 (Kepler-978b) is somewhat smaller than Uranus
in both mass and radius. It has the second highest value for TTV
amplitude, but a relatively lower average error, resulting in one of
the higher S/N values.

The planet hypothesis results in a reduced χ2 value of 0.9, while
the moon hypothesis is at 1.3. However, the mass required for the
exomoon model is approximately 5 M⊕, more than two-thirds that
of the planet, and suggesting a possible lower density makeup.
Fig. 13 shows an additional dashed blue line to indicate the detection
threshold for a Neptune-like density moon, but regardless of its
density, such a moon is likely large enough to detect photometrically.
We conclude that the TTVs of KOI-1848.01 are unlikely to be due
to an unseen moon.

5.2.2 KOI-2469

Spectral type K2 Planet period 131.19 d
Star radius 0.80 R� Planet radius 2.4 R⊕
Star mass 0.77 M� Planet mass 6.6 M⊕

CDPP (6.9 h) 143 ppm Avg TTV err 15.5 min

KOI-2469.01 is another target with an ‘unconfirmed’ status in
NASA’s Exoplanet Archive, but has a disposition score of 1 (Akeson
et al. 2013; Thompson et al. 2018). The star is in a near-tie for the

Figure 11. Quality of fit and sensitivity plot for KOI-2728.01. The symbols
used are the same as in Fig. 5. The dashed blue line represents the detection
threshold when assuming a Neptunian density rather than terrestrial.
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Exomoons from TTVs 2389

Figure 12. Quality of fit and sensitivity plot for KOI-3220.01. The symbols
used are the same as in Fig. 5.

noisiest of our targets with a CDPP of 143 ppm. The known planet
is a super-Earth (Chen & Kipping 2018) with the largest average
TTV error of our sample, the largest TTV amplitude, and the bare
minimum number of transits (10).

The high CDPP value pushes the blue line in the sensitivity plot
to the right, and both the posterior and best-fitting values are well
inside the green zone. The reduced χ2 value for planet hypothesis
is 0.31, but 1.13 for the moon hypothesis. The modelled mass of
the moon could be anywhere from a quarter to half the mass of the
planet, (approximately 2.5–3.5 M⊕) making this a binary planet, and
suggesting a possible lower density. Fig. 14 shows the detection
threshold for a terrestrial world in blue, while the threshold for a
Neptunian density is dashed. An unseen moon could exist in the
system but only if it were of terrestrial density. However, given its
much improved quality of fit, the planet hypothesis is more likely.

5.2.3 Other systems with poor moon fits

The remaining targets KOI-63, KOI-318, and KOI-1876 all showed
poor moon fits, with reduced χ2 values of 2.5, 1.9, and 3.3. Of the
three, KOI-318 shows the best TTV fit but the worst TDV fit of any
target. KOI-63 is our shortest period target, but the best moon fit
misses the majority of the data points, as does the best fit for KOI-
1876. Combined, we thus consider it unlikely that a moon alone is
the cause for the TTVs in these systems, and we did not proceed
with the planet hypothesis for these targets or ascertain a position in
a sensitivity plot. The results for these systems are shown in Fig. 15.

Figure 13. Quality of fit and sensitivity plot for KOI-1848.01. The symbols
used are the same as in Fig. 5. The dashed blue line represents the detection
threshold when assuming a Neptunian density rather than terrestrial.

6 D ISCUSSION

While we have shown that photometrically undetected exomoons
could create TTVs (summarized in Tables 4 and 5) our targets here
are at best equally well matched by the hypothesis of an additional
unseen planet in the system. This is perhaps not surprising given that
our exomoon model has only five parameters, while the additional
planet model has 10, giving it additional flexibility. As a result it will
be very difficult to establish the presence of an exomoon solely on
the basis of TTVs produced, and future observational platforms with
higher photometric sensitivity will be required to detect them with
confidence.

An important consideration throughout this investigation is the
assumed density of the exomoon, which affects its cross-section
and thereby the location of the blue photometric detection threshold
line. In all sensitivity plots shown, a solid blue line indicates the
expected detection limit assuming the moon is of a terrestrial
density, which results in a smaller cross-section for a given mass.
Where the modelled moon mass is particularly large, a dashed
line corresponding to a Neptunian density is shown, and this can
appreciably decrease the size of the green zone.

All the exomoon models presented here require significantly larger
masses in proportion to their host planet than is seen in our Solar
system. Not counting Charon around Pluto (mass ratio of 0.13), the
largest moon proportional to its planet in our Solar system is our own
Moon, with a mass ratio of 0.0123. The smallest hypothetical moon
in our sample is in KOI-1472, at a factor of 0.043, and several of the

MNRAS 501, 2378–2393 (2021)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/501/2/2378/6019892 by W
estern U

niversity user on 15 January 2021



2390 C. Fox and P. Wiegert

Figure 14. Quality of fit and sensitivity plot for KOI-2469.01. The symbols
used are the same as in Fig. 5. The dashed blue line represents the detection
threshold when assuming a Neptunian density rather than terrestrial.

Table 4. Summary of best-fitting results: planet versus moon hypothesis.

TTV
Number of data S/N Planet Moon Could moon

KOI points (min) χ2/N χ2/N explain TTVs?

268.01 11 2.37 0.579 1.514 Yes
303.01 21 1.56 0.581 0.793 Yes
1302.01 24 1.79 0.457 0.804 Yes
1472.01 17 1.66 0.329 0.865 Yes
1848.01 27 2.46 0.873 1.343 No
1888.01 12 1.84 0.883 0.682 Yes
1925.01 11 1.57 0.656 0.622 Yes
2469.01 10 2.42 0.307 1.133 No
2728.01 20 1.71 0.427 0.748 Yes
3220.01 14 1.67 0.566 0.826 Yes

targets have mass ratios greater than 0.1. Multiple mechanisms for
the formation of massive moons have been explored (Barr & Bruck
Syal 2017; Malamud et al. 2020) and so these moon models cannot
be excluded on that basis. In fact the most massive exomoons are
likely to be the first discovered, much as was the case for exoplanets
themselves.

The stellar radius is vital in establishing the transit detection
threshold, and thus the size of the green zone in the sensitivity
plots. Here, we used stellar values from Mathur et al. (2017) for
both the mass and radius of the stars. Just before submission of this

Figure 15. Quality of fit for TTV and TDVs for KOIs 63.01, 318.01, and
1876.01. The symbols used are the same as in Fig. 5, but no planet results are
included.

Table 5. Physical parameters of potential moons, best-fitting results.

Moon / Orbital
Mass planet distance

KOI (M⊕) mass ratio (RHill) Eccentricity

268.01 0.817 0.088 0.217 0.281
303.01 0.499 0.066 0.278 0.198
1302.01 2.931 0.267 0.289 0.113
1472.01 1.636 0.043 0.206 0.495
1848.01 5.557 0.684 0.299 0.166
1888.01 1.551 0.078 0.235 0.027
1925.01 0.300 0.300 0.222 0.024
2469.01 3.441 0.521 0.294 0.368
2728.01 6.057 0.247 0.295 0.130
3220.01 1.586 0.111 0.208 0.269
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work, an updated Gaia–Kepler catalogue (Berger et al. 2020) was
released. It provides stellar radii and mass values largely consistent
with the ones we used (though KOI-2469 is absent). Masses are
within their mutual error bars and differ by a median of less than
5 per cent, and at most 10 per cent. Radii show greater differences,
but are still mostly within their mutual error bars, differing by
a median of 14 per cent. The stars with more significant radii
differences (those greater than 15 per cent) are usually larger in
the Berger et al. catalogue. There is one notable exception, that of
KOI-2728. The value from Mathur et al. is 2.6 R� while Berger
et al. estimates it at 1.3 R�. This updated stellar radius would
reduce the transit detection threshold by a factor of 8 (shifting
the blue line leftwards on the sensitivity diagram for KOI-2728).
In this case, a terrestrial moon would still lie inside the green
zone, but a moon of Neptunian density would be on the edge of
detectability.

7 C O N C L U S I O N S

We examined an unexplored portion of parameter space and evalu-
ated whether exomoons could plausibly explain certain TTV signals
seen in the Kepler data. We rule out the existence of moons being the
primary cause of the TTVs in five Kepler systems; however, there are
TTV signals consistent with exomoons in eight others. We cannot
definitively ascribe the observed TTVs in any particular system to an
exomoon, as they all prove equally reproducible by a hypothetical
additional planet. The currently available TTV and TDV data do
not appear sufficient as the sole method for detecting an exomoon.
While these TTVs could be explained by an unseen moon, we lack
sufficient information to claim any detections.

Of the Kepler data set, the systems examined here may be the best
targets warranting further examination in the search for exomoon
TTVs. Followup studies using radial velocities (to potentially find or
rule out large companion planets as TTV sources) and further transit
studies with improved timing (especially for transit durations) would
be required to definitively determine the existence of the potential
exomoons examined here. The upcoming PLATO mission (ESA
2017) with its higher cadence capability may shed light on these
systems by obtaining higher precision timing observations.
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Kipping D. M., Nesvorný D., Buchhave L. A., Hartman J., Bakos G. Á.,
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