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ABSTRACT
It has recently been shown by Egal et al. that some types of existing meteor in-atmosphere
trajectory estimation methods may be less accurate than others, particularly when applied
to high-precision optical measurements. The comparative performance of trajectory solution
methods has previously only been examined for a small number of cases. Besides the radiant,
orbital accuracy depends on the estimation of pre-atmosphere velocities, which have both
random and systematic biases. Thus, it is critical to understand the uncertainty in velocity
measurement inherent to each trajectory estimation method. In this first of a series of two
papers, we introduce a novel meteor trajectory estimation method that uses the observed
dynamics of meteors across stations as a global optimization function and that does not
require either a theoretical or an empirical flight model to solve for velocity. We also develop
a 3D observational meteor trajectory simulator that uses a meteor ablation model to replicate
the dynamics of meteoroid flight, as a means to validate different trajectory solvers. We both
test this new method and compare it to other methods, using synthetic meteors from three
major showers spanning a wide range of velocities and geometries (Draconids, Geminids, and
Perseids). We determine which meteor trajectory solving algorithm performs better for all-sky,
moderate field-of-view, and high-precision narrow-field optical meteor detection systems. The
results are presented in the second paper in this series. Finally, we give detailed equations for
estimating meteor trajectories and analytically computing meteoroid orbits, and provide the
PYTHON code of the methodology as open-source software.

Key words: comets – meteors – meteoroids; methods: data analysis.

1 IN T RO D U C T I O N

Schiaparelli & von Boguslawski (1871) were the first to show
the connection between the orbits of meteor showers and comets
(Romig 1966; Hughes 1982). This physical connection motivated
development of various methods of estimating meteor trajectories,
with the first reasonably precise measurements made even earlier
with the pioneering work of Brandes and Benzenberg in the late
18th century (Burke 1986). These techniques typically use optical
measurements from multiple sites to estimate atmospheric meteor
trajectories. Gural (2012) provides a good historical overview.

In this work, we focus on three foundational papers that provide
representative descriptions of the three most common modern
meteor trajectory estimation methods:

� E-mail: dvida@uwo.ca (DV); pgural@gmail.com (PSG); pbrown@uwo.ca
(PGB)

(i) the intersecting planes (IP) method as described by Ceplecha
(1987);

(ii) the line-of-sight (LoS) method by Borovička (1990);
(iii) the multiparameter fit (MPF) method of Gural (2012).

The goal of any trajectory solver is to reconstruct the atmospheric
trajectory of a meteor, leading ultimately to an estimate of its pre-
atmospheric orbit. The trajectory is defined by a position vector
(a reference position in space) and a velocity vector. To compute
a reliable heliocentric orbit, this should preferably be at a point
before any significant deceleration of the meteoroid occurs. A
common assumption is that the trajectory is a straight line, a
good approximation for shorter meteors. However, longer meteors,
particularly those entering at shallow angles, may show significant
deviation from a straight-line trajectory due to Earth’s gravity
(Ceplecha 1979).

Existing methods usually estimate the geometry of the meteor
path separately from the dynamics of the meteoroid (i.e. the time-
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dependent characteristics of the meteor: position, velocity, and
acceleration). The velocity can be estimated by fitting an empirical
model to the observations of time versus path-length from the
beginning of the meteor. Gural (2012) was the first to note that
trajectories can be better constrained by fitting a meteor propagation
model to both the meteor trajectory geometry and the meteoroid
dynamics at the same time. This assumption makes use of the fact
that all observers should see the same dynamical behaviour of a
particular meteoroid at the same point in time. A consequence of
this approach is that it allows an estimate of the absolute timing
offsets between stations. A further recent advance in this area is
using particle filters to directly fit numerical meteor ablation models
to better estimate trajectories of fireballs (Sansom, Rutten & Bland
2017).

The original motivation for this work was earlier analysis of two-
station meteor data obtained by the Canadian Automated Meteor
Observatory (CAMO) mirror tracking system (Weryk et al. 2013).
The system achieves an angular precision for meteor positions of
the order of a few arcseconds (limited largely by the system’s
ability to resolve the physical spreading of the meteor itself;
Stokan et al. 2013), which translates to a spatial precision of
a few metres. The temporal precision of the system is 10 ms.
This is sufficient to discern individual fragments of fragmenting
faint meteors (Subasinghe, Campbell-Brown & Stokan 2016; Vida
et al. 2018a). Similar to Egal et al. (2017), we found that the
existing methods of trajectory estimation do not always provide
solutions of satisfactory quality. For example, we often found with
CAMO measurements that the IP and the LoS method produce
solutions where the dynamics of the meteor do not match at
different stations. The MPF method, in some cases, depending on
the velocity model used, had convergence issues. This suggested
that in some cases forcing the meteoroid velocity to follow a
closed-form empirical model did not result in a physically consistent
solution. As a result of this experience, we also wanted to objec-
tively quantify the real uncertainties and formally define the true
accuracy of individually measured meteor radiants and velocities
as estimated using CAMO data, and by extension other optical
systems.

This series of papers attempts to answer the following question:
For a given type of optical system, what is the best trajectory solver
to use, and what quantitative accuracy should one typically expect?
We note that this is one step in the process of defining the best
estimate for a meteoroid’s original heliocentric orbit. The necessary
additional step is accounting for deceleration due to atmospheric
drag on the earliest measured luminous point of the meteor, a topic
addressed in an earlier paper (Vida, Brown & Campbell-Brown
2018b).

In the following sections, we discuss in detail the theory behind
various methods of trajectory estimation and describe our novel
Monte Carlo approach. Finally, for completeness, we summarize
the equations for analytically computing meteoroid orbits from
trajectory information, as previously published procedures were
ambiguous in several crucial steps.

2 OV E RV I E W O F T R A J E C TO RY S O LV E R S

A set of LoS (angle–angle) measurements of meteor positions
from an individual observing station describes a fan of rays when
converted into a station-fixed Cartesian coordinate system. By
assuming that the position of an observer can be represented by a
single point in the same coordinate system (usually at the time of the
middle of the meteor’s trajectory), a plane can be fit through these

points (Ceplecha 1987). By repeating the procedure for N different
stations, one plane for each station is obtained. The intersection of
every pair of planes,

(
N

2

)
pairs in total, results in a line that describes

the optimal trajectory as measured from two stations. If there are
more than two trajectory lines, the average of the trajectories can
be computed weighted by the squared sine of the convergence
angle between every plane pair. The convergence angle is the angle
between a pair of planes.

Borovička (1990) points out a disadvantage of the IP method:
when the planes are paired using observations from multiple
stations, the information about the uncertainty of individual mea-
surements can be lost because only the whole plane is taken into
consideration when intersecting it with another to define a trajectory.
An outlier LoS measurement can shift the whole plane in a certain
direction and influence the resulting trajectory. However, the fit
residuals will not show the influence from the sole outlier.

Instead of pairing planes from individual stations and producing
the trajectory as a secondary product, Borovička (1990) proposes
that one can consider every measurement of meteor position as a
ray emanating from the observer in the direction of the meteor at
a specific point along its linear track. Each ray is usually referred
to as an LoS measurement of the meteor. The trajectory is then
found as the 3D line that results in the minimal distance to all
measurement lines of sight, with the solution computed using a
least-squares minimization. Furthermore, Borovička (1990) points
out that this method can compensate for Earth’s rotation at each LoS
observation directly during the trajectory estimation process. In the
absence of this compensation, fixed observers on the non-inertial
rotating surface of the Earth perceive a virtual force (the Coriolis
force) on the apparent meteor trajectory.

Additionally, the Borovička (1990) method makes possible
compensation for diurnal aberration, an effect due to the Earth’s
rotation that occurs because of the changing observer’s perspective
of the meteor with respect to distant stars. Assuming one knows
the absolute time, an Earth-centred inertial (ECI) reference frame
can be adopted in which the observer’s coordinates are constantly
changing due to Earth’s rotation, but the meteor trajectory remains
linear. We use the definition of ECI coordinates where the X-axis is
aligned with the mean equinox at 12:00 Terrestrial Time on 2000
January 1 (J2000).

In the original LoS paper, Borovička (1990) keeps the observers
in the Earth-centred Earth-fixed frame (ECEF), presumably because
the timing of each individual measurement (taken on a single
photographic film in that era) was unknown. In contrast to the
ECI system, which does not rotate with respect to the stars but the
coordinates of observers on Earth’s surface are changing in time,
coordinates of ECEF are fixed with respect to the Earth’s surface.
Without correcting for the changes in observer positions, Borovička
(1990) found the results of the IP and LoS methods comparable.
The reason that it is not possible to account for moving observers
in the IP method is that the motion of the observer and the positions
of the meteor are not coplanar (unless all measurements coincide
with the observer’s zenith, an impossible geometry to have from
two different stations).

To provide a concrete estimate of the magnitude of the diurnal
aberration correction, let us consider an observer at a latitude
of 45◦N where the Earth’s rotational east–west velocity is about
328 m s−1. For a meteor of 1 s duration, the real position of
the observer will change ±164 m with respect to the average
time of the trajectory determination. There is also a small effect
when two observers are not at equal latitudes. A second observer
at 46◦N (∼120 km away) experiences a rotational velocity of
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2690 D. Vida et al.

Figure 1. Left: The IP method with only the two stations having the best convergence angle shown. The planes are shown in blue and orange (semitransparent)
and are coplanar with LoS observations (blue arrows emanating from stations). Note that stations are single points in the ECEF frame, but here we show them
in the ECI frame at a fixed time. The green arrows are plane normals from each station, and the red arrow is the resulting estimated trajectory. Right: The LoS
method, where coordinates of all four stations are changing due to the Earth’s rotation.

322 m s−1, which causes a differential of 3 m between the first
and the last positions of the two observers. This effect is minor
if positional errors are orders of magnitude larger, but it has to
be taken into account when estimating high-precision trajecto-
ries where positional measurements are of the order of metres.
Fig. 1 shows a general comparison between the IP and the LoS
method.

The MFP method was first presented at the 2011 International
Meteor Conference with the underlying algorithmic details de-
scribed in Gural (2012). It had been developed for the CAMS
project, where the full processing pipeline is described in Jenniskens
et al. (2011). In contrast to the IP and LoS methods, which are purely
geometrical, the MPF method uses a velocity model (i.e. dynamical
information) as well. By assuming an empirical velocity model that
may include deceleration terms, the MPF method finds a trajectory
solution (a line in 3D space) as well as the velocity and deceleration
coefficients that best describe the observed meteor’s observations
from all stations given the constraints of the empirical dynamical
model. Because of the dynamical constraints, the method is also
able to estimate relative timing offsets between camera sites.

To avoid issues of confusion with local minima in the method’s
cost function, an initial guess for the solution is obtained using the
IP method. This guess is further refined using the LoS method – the
latter is modified by minimizing the angles between the measured
lines of sight and the model trajectory, instead of minimizing the
distances between the two. This refined guess is fed into a simplex-
based non-linear equation solver where the angles between the
measured lines of sight and the positions predicted by the model
are minimized. This effectively ensures that all observers ‘see’ the
same dynamics of the meteor in time.

Because observing systems usually do not have absolute syn-
chronized time, the time difference between the observers must be
estimated as well in the MPF. In Gural (2012), the MPF method was
compared to the IP and LoS methods using data from wide-field
systems. The results showed that the radiant dispersion of meteor
showers is significantly smaller if the MPF method with a constant
velocity model (i.e. no deceleration) is used, especially for cases
with small convergence angles. The authors proposed three meteor
propagation models:

(i) The constant velocity model:

d(t) = v0t, (1)

where d(t) is the distance of the meteor at a particular point in
time after the beginning point and v0 is the constant velocity of the
meteor.

(ii) The linear deceleration model:

d(t) =
{

v0t, if t < t0,

v0t − 1
2 a(t − t0)2, otherwise,

(2)

where t0 is the time when meteor begins decelerating with a constant
deceleration a.

(iii) The empirical exponential deceleration model of Whipple &
Jacchia (1957):

d(t) = v0t − |a1|e|a2|t , (3)

where a1 and a2 are deceleration parameters.

The complexities due to the physical properties of the me-
teoroids and their resulting ablation behaviour are not included
in these models. The exponential deceleration model is the only
one motivated by a physical basis, namely, that the meteoroid’s
deceleration is proportional to the atmospheric density, following
classical single-body ablation models (Ceplecha et al. 1998). As the
atmospheric density increases exponentially with decreasing height,
the velocity should follow a similar functional trend. However,
the single-body assumption breaks down when a meteoroid starts
fragmenting, a behaviour shown to exist for at least 90 per cent of
meteors from high-precision observations (Subasinghe et al. 2016),
a phenomenon understood to be ubiquitous across all meteoroid
masses (Hawkes & Jones 1975; Ceplecha et al. 1998). Comparing
the performance of different trajectory estimation methods even
for single-body ablation has not been rigorously addressed. Gural
(2012) performed simulations for a constant velocity model over
an extensive range of encounter geometries and speeds. How-
ever, the comparison did not examine other functional forms of
deceleration.

In recent work by Egal et al. (2017), it was shown that the
exponential model is difficult to fit using local cost function
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Novel meteor trajectory solver 2691

minimization methods since it is mathematically ill-conditioned
and the associated model coefficients have linear dependence. The
authors showed the advantages of global minimization methods
over local techniques. In particular, they applied the particle swarm
optimization (PSO) method (Eberhart & Kennedy 1995) for fitting
the exponential deceleration model and showed that it produced
superior results, albeit at the expense of higher computational costs.
Their work has shown that the fit works well on simulated data
produced using the exponential deceleration model. In contrast,
the fits were poorer when model data were created using the
meteor ablation model of Borovička, Spurnỳ & Koten (2007). They
concluded that of all methods tested (IP, LoS, and MPF), the MPF
method consistently produced results with the smallest residuals and
good radiant solutions even for meteors with very low convergence
angles (Qc ∼ 1◦). They also showed that the initial velocity estimated
from all of the trajectory solvers for ablation-simulated meteoroids
was not accurately determined. This suggests that a more reliable
meteor propagation model is needed for the MPF in particular.

We have directly used all implementations of the three trajectory
solvers including the PSO-based implementation of the Gural
(2012) method, to test their relative performance on high-precision
CAMO data. Given the performance limitations of existing algo-
rithms, it was decided to develop a Monte Carlo trajectory solver
specifically to attempt to improve the accuracy of meteor trajectory
solutions where high-precision data are available. The details of this
trajectory solver are given in Section 3. To verify the performance
of this new method and compare to the three other solvers, we
also developed an observational meteor trajectory simulator. This
provides synthetic measurement inputs to each solver using known
solutions; details are given in Section 4.

We emphasize that the ultimate limitation to the accuracy in the
estimation of a meteoroid orbit based on observations of a meteor in
the atmosphere is the amount of deceleration that occurs prior to the
luminous phase. We use the term ‘initial velocity’ for the velocity
of the meteor at the moment of first detection and ‘pre-atmospheric
velocity’ for the velocity before any significant deceleration has
occurred (we assume this to be at a height of 180 km). The difference
between the initial velocity and the pre-atmospheric velocity for
various types of meteoroids as measured by several typical obser-
vation systems was analysed in Vida et al. (2018b). It was found that
low-velocity meteors significantly decelerate [up to 750 m s−1 for
moderate and narrow field-of-view (FOV) optical systems] prior to
sensor detection of the visible meteor trail. The proposed correction
of Vida et al. (2018b) should be used to reconstruct the real pre-
atmosphere velocity from the measured initial velocity. Establishing
the latter quantity and its true uncertainty is the focus of this work.

3 MO N T E C A R L O TR A J E C TO RY E S T I M AT I O N
M E T H O D

Our newly developed method of trajectory estimation builds on the
work of Gural (2012) and expands on an earlier similar approach
described in Weryk & Brown (2012). This technique uses the IP
and the LoS method to obtain a first estimate of the trajectory
solution, and then uses the observed angular residuals between the
measurements and the fitted trajectory as a direct estimate of the
uncertainty. With these estimates in hand, Monte Carlo runs are then
generated by adding Gaussian noise to the observations using the
standard deviation of the angular residuals from the initial trajectory
estimate and redoing the trajectory solution using noise-added data.

This procedure gives a set of trajectories that are geometrically
possible to fit within the measurement uncertainty. The lines of sight

from individual stations are then projected to the trajectory line and
the dynamics of the meteor as seen from every station are computed.
Critically in this new technique, the best solution is chosen by
comparing the observed dynamics between different stations and
choosing the trajectory that has the most consistent dynamics as seen
from all stations. This approach constrains the trajectory solution
both geometrically and dynamically without limiting the motion
to an empirical propagation/ablation model, while simultaneously
keeping LoS vectors within measurement uncertainty. Note that
unlike in the MPF method, the geometry and dynamics are solved
separately; the dynamics is only used as an additional constraint on
the geometry.

Here, we provide detailed formulations of all the equations
used by this trajectory solver, with the exception of well-known
mathematical and numerical methods. The equations are given in a
way that would make their computer implementation unambiguous
and thus may slightly deviate from standard mathematical notation.
Where the function for the four-quadrant inverse tangent is used,
we assume that the order of arguments is atan2(y, x), as in C,
FORTRAN, PYTHON, and MATLAB. This differs from MATHEMATICA

and MS EXCEL whose implementations have the two arguments
reversed. mod is the modulo operator, the integer division remainder
operation. The PYTHON implementation of both the simulator
and the solver is open source and publicly available at https:
//github.com/wmpg/WesternMeteorPyLib.

3.1 Inputs and conversions to rectangular coordinates

For every station k ∈ {1, . . . , Nstations}, we have measurements j ∈
{1, . . . , Nmeas(k)}, producing inputs to the trajectory solver:

(i) Relative time tkj in seconds of each measurement from every
station, relative to the reference Julian date JDref.

(ii) Angular measurements of meteor positions in the horizontal
coordinate system: azimuth measured eastward from the north Akj,
and altitude above the horizon akj for the epoch of date from
each station. Equivalently, right ascension α and declination δ may
be used, which can be converted to azimuth and altitude using
equations given in Appendix G. If the equatorial coordinates are
given in the J2000 epoch, care must be taken to first precess them to
the epoch of date (see Appendix H). The epoch of date is assumed
to be at JDref.

(iii) Geographical coordinates of every station: geodetic latitude
ϕk, longitude λk, and height above a WGS84 Earth ellipsoid hk [note
that this height is not the same as the mean sea level (MSL) height
reported by Google Earth and newer GPS devices – the difference
can be up to 100 m].

The first step in the process is to compute the Julian date of every
individual measurement:

JDkj = JDref + tkj /86 400. (4)

These times get updated in the second stage of the iteration when
the trajectory is recomputed after the timing offset estimation. Next,
measurements are converted to equatorial coordinates for the epoch
of date using equations given in Appendix F. Two sets of equatorial
coordinates are obtained: the first assumes the stations are fixed at
JDref and is used for the IP method, while the second one takes into
account the movement of the stations at each measurement time-
step. Thus, when computing values for the IP method, the JDref

reference time should be used for all measurement points. When
computing values for the LoS method, the Julian date JDkj of the
individual measurements should be used. The measurements are
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2692 D. Vida et al.

then converted to Cartesian unit vectors using equation (5). These
vectors define the direction of the line of sight from a given station
at each measurement point in time.

ξ = cos δ cos α,

η = cos δ sin α,

ζ = sin δ. (5)

The geographical positions of the stations are converted to ECI
coordinates relative to the centre of the Earth using equations given
in Appendix D1. Two sets of coordinates are calculated: Xkj, Ykj,
Zkj for the position of each station at every point in time JDkj and
X′

k, Y
′
k, Z

′
k for stations fixed at JDref. ECI coordinates fixed at JDref

are needed for the IP method, as this method implicitly assumes
that the station is a point and its coordinates cannot move in time.

3.2 Plane fits

The best-fitting plane for observations from one station can be
defined as

ax + b y + d = −z, (6)

where x, y, z are data vectors containing Cartesian unit vectors of
directions ξ , η, ζ , and a zero, which represents the position of the
station, taken to be the origin of the direction vector’s coordinate
system:

x = [0, ξk1, . . . , ξkNmeas(k) ],

y = [0, ηk1, . . . , ηkNmeas(k) ],

z = [0, ζk1, . . . , ζkNmeas(k) ]. (7)

The problem can be written in data matrix form as⎡
⎢⎢⎢⎢⎢⎢⎣

x1 y1 1

x2 y2 1

...

xn yn 1

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎣

a

b

d

⎤
⎥⎥⎦ = −

⎡
⎢⎢⎢⎢⎢⎢⎣

z1

z2

...

zn

⎤
⎥⎥⎥⎥⎥⎥⎦

. (8)

If we take the data matrix and pre-multiply both sides of the equation
by its transpose, and invert to solve for the unknowns, we perform
the equivalent of a linear least-squares fit. One should normalize
the points to be relative to their mean, x̄, ȳ, z̄, in which case d can
be excluded and one dimension can be dropped. Thus, the matrix
equation solution can be written as[
a

b

]
= −

[ ∑n

i=1(xi − x̄)2
∑n

i=1(xi − x̄)(yi − ȳ)∑n

i=1(xi − x̄)(yi − ȳ)
∑n

i=1(yi − ȳ)2

]−1

×
⎡
⎣
∑n

i=1(xi − x̄)(zi − z̄)∑n

i=1(yi − ȳ)(zi − z̄)

⎤
⎦. (9)

After solving the matrix, the direction normal to the fit plane is

n = [a, b, 1]T. (10)

3.3 Plane intersections

We now consider planes in point-normal form. After finding the unit
plane normal n̂k for observations from every station, we make use
of the additional constraint that each normal vector must go through

the position of the station in ECI coordinates (X′
k, Y

′
k, Z

′
k). For N

stations, there are a total of
(

N

2

)
combinations of different plane

intersections. Although Ceplecha (1987) shows how to compute
the weighted average trajectory for all combinations of planes, we
follow the approach of Gural (2012), where only the solution with
the pair of planes that have the highest convergence angle is taken.
This solution is usually satisfactory to estimate the initial estimate
of the trajectory for the LoS method that is then refined numerically.

For every pair of planes, we have their normals, n̂A and n̂B, and
position vectors for every station, pA = [X′

A, Y ′
A, Z′

A] and pB =
[X′

B, Y ′
B, Z′

B]. The convergence angle QAB between the two planes
is

cos QAB = n̂A · n̂B. (11)

The apparent radiant unit vector based on these two stations is

R = n̂A × n̂B,

R̂ = R
|R| . (12)

We also make sure that the radiant vector is pointing in the correct
direction:

R̂ =
{−R̂, if [ξA1, ηA1, ζA1] · R̂ < [ξAn, ηAn, ζAn] · R̂,

R̂, otherwise,
(13)

where [ξA1, ηA1, ζ A1] is the vector pointing to the first observed
point on the meteor trajectory from station A and [ξAn, ηAn, ζ An] is
the vector pointing to the last observed point from station A. This
condition follows from the fact that the radiant is always closer to
the first observed point.

The equatorial coordinates of the radiant are given by

δ = arcsin R̂z,

α = atan2(R̂y, R̂x) mod 2π, (14)

where the mod2π operation wraps the right ascension to the [0, 2π]
range.

The intersection of the planes from each station forming the
radiant line in 3D space is now known and unit vectors from each
station to the closest point on the radiant line to the respective station
can be calculated as

w = R̂ × n̂,

ŵ = w

|w| ,

ŵ =
{−ŵ, if ŵ · [ξ1, η1, ζ1] < 0,

ŵ, otherwise.
(15)

The last equation ensures the vector is pointing from the station
towards the radiant line. These vectors, ŵA and ŵB, are calculated
for both stations.

The range vectors from each station to the radiant line can be
found as


 p = pA − pB,

cos ω = ŵA · ŵB,

rA = cos ω(
 p · ŵB) − 
 p · ŵA

1 − cos2 ω
ŵA,

rB = 
 p · ŵB − cos ω(
 p · ŵA)

1 − cos2 ω
ŵB, (16)
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Novel meteor trajectory solver 2693

where rA and rB are vectors pointing from the stations to the
respective point on the radiant line closest in range to the station.

The ECI coordinates of the position portion of the state vector
are calculated by adding the ECI position of one of the stations to
the appropriate range vector. We choose station A:

S = pA + rA. (17)

The trajectory solution from these two stations alone is thus
represented by the apparent radiant unit vector R̂ and the reference
position vector S.

For the case with more than two stations, we also compute weights
Wk for every station k as

Pa = arccos
(

R̂ · ŵk

)
,

Wk = sin2 Pa, (18)

where ŵk is computed from equation (15) and Pa is the perspective
angle of the trajectory, namely, the angle made between the observer,
the state vector, and the radiant line. In this approach, the station
that observes the meteor closest to perpendicular to the trajectory
is given the highest weight, while stations observing the meteor
‘head on’ have the lowest weights. If the perspective angle is low,
small errors in meteor position measurement will propagate into
large errors on the trajectory when they get projected; thus, the
weight of those observations needs to be reduced. The weights are
kept at unity if only two stations are used in the solution. The sin 2

weighting scheme follows Ceplecha (1987), with the difference of
using the perspective angle instead of the convergence angle. The
weighting is only used for the LoS method described below.

3.4 Line-of-sight method

After pairing all planes and finding the solution with the best
convergence angle, the resulting vectors R̂ and S are taken as
the starting solution for the LoS method. This method seeks to
find a radiant line (a line in 3D space) that minimizes the angular
differences between all observation sightlines and the radiant line.

Let dobskj = [ξkj , ηkj , ζkj ] be the direction vector of every mea-
surement from station k and dmodkj

be the direction of the modelled
radiant line as seen from that station. The trajectory solution is then
R̂ and S for which

min

∑Nstations
k=1

∑Nmeas(k)
j=1 Wk∠(d̂obskj , d̂modkj

)∑Nstations
k=1 Wk

. (19)

This sum is minimized numerically using the Nelder–Mead method.
d̂modkj

can be calculated using

dmodkj
= T ′

kj − pkj ,

d̂modkj
= dmodkj

|dmodkj
| , (20)

where T ′
kj is the gravity-corrected point on the radiant line that is the

closest to the measured line of sight and pkj are the ECI coordinates
of station k at time j. T ′

kj can be computed as

T ′
kj = T kj − 
h(tkj )

T kj

|T kj | , (21)

where T kj is a point on the radiant line that is the closest to the
measured line of sight that can be computed using equations given
in Appendix B. 
h is the height drop due to gravity computed using
the equations in Appendix A; adding this term effectively simulates

the curvature of the trajectory due to gravity. tkj here is the time the
meteor is at point j as seen from station k relative to JDref.

The angle between the closest point on the 3D radiant line and
the observed line of sight is calculated as (note that unit vectors
must be used)

∠(d̂obskj , d̂modkj
) = arccos

(
d̂obskj · d̂modkj

)
. (22)

3.5 Computing meteor length, velocity, and lag

Once a trajectory solution is found, the location of the estimated
reference state vector position S along the radiant line is moved to
the beginning of the meteor. This is done by setting S to the ECI
coordinates on the radiant line with the largest observed height,
implicitly assuming that a meteor is always descending downward
(not necessarily true for Earth-grazers).

The length along the track is found by projecting the observations
on the radiant line using the equations given in Appendix B,
producing dmodkj

. The meteor length is defined as the distance from
the reference state vector position S to every projected measurement
ray along the radiant line:

lkj = |dmodkj
− S|. (23)

The time variation of velocity defines deceleration, but since it
is the second derivative of the length versus time, deceleration
itself tends to have large point-to-point variances. As a proxy for
overall deceleration, we use lag. Following Subasinghe, Campbell-
Brown & Stokan (2017), we define lag as ‘the distance that the
meteoroid falls behind an object with a constant velocity that is
equal to the initial meteoroid velocity’. In that work, the authors
use the first half of the meteor’s trajectory to estimate the initial
velocity. The limitation of this approach is that the time offsets
between observations from different stations can cause errors if all
observations from all sites are simultaneously used for the velocity
estimation. Thus, the time offsets have to be estimated first.

3.6 Estimating timing offsets and the initial velocity

To estimate timing offsets, we use the fact that the computed length
is insensitive to offsets in time. The timing offset estimation is
performed by using the station that first recorded the meteor as
the station with reference time for all other stations; i.e. it has
absolute time (
t = 0). The time offsets for all stations are then
numerically estimated by minimizing the sum of time differences
for all combinations of station pairs. The minimization cost function
f
t is defined as

f
t = tsum

Wsumcsum
,

tsum =
Nstations∑

k=1

Nstations∑
r=1

Nmeas(r)∑
j=1

WkWr

(
tk(lrj ) − trj

)2
,

Wsum =
Nstations∑

k=1

Nstations∑
r=1

WkWr,

csum =
Nstations∑

k=1

Nstations∑
r=1

Noverlap, (24)

where k is the station index, r the index of all other stations
(iterations where k = r are skipped), trj is the time from station
r, and tk(lrj) is the time from station k at length from station r. tk(lrj)
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is obtained by linear interpolation of time versus length. Wk and Wr

are weights for the respective stations as defined in equation (18),
and Noverlap is the number of points that overlap in length between
stations k and r. Thus, only overlapping segments of the meteor
path for stations k and r are used. This requirement is the main
limitation of the method: for the approach to work, an overlap of at
least four points between stations is needed. If there is no overlap
(e.g. one station observed only the beginning and the other only the
end of a meteor), the approach will not work and one has to assume
a velocity model. For those cases, we found that the MPF method
of Gural (2012) worked well.

This approach of estimating time offsets is not sensitive to the
functional form of the deceleration; it relies on that fact that a truly
accurate trajectory solution must show the same dynamics from
all stations. If the observed dynamics differ, it indicates that the
trajectory was not well estimated. This is the central foundation of
our novel approach.

After an initial estimate is made of the timing offsets, the entire
trajectory solution is repeated with updated timing offsets. JDref is
shifted to correspond to the new value of t = 0. Because the state
vector S is kept at the beginning of the meteor, this means that the
position of the meteor at time JDref corresponds to S.

The initial velocity is then estimated by progressively fitting a
line to the solution time versus length. This is done starting from
the first 25 per cent of points from all stations (at least four points
for short events) up to 80 per cent of all points. The best estimate of
the initial velocity is the fit with the smallest standard deviation.

This modification mitigates the influence of deceleration on the
initial velocity estimate, although at best it is the average velocity
of the first 25 per cent of the trajectory. In practice, we found that
this approach works well. This approach was adopted because the
standard deviation of the fit done on the first quarter of the trajectory
is usually high due to the measurement uncertainty as meteors tend
to be faint at the beginning of the trail and thus the initial velocity
may be uncertain as well. As more points get included, the standard
deviation tends to go down, but it will rise again if significant
deceleration is present. The approach is thus a balance between
choosing a fit that trades the effects of measurement uncertainty
and deceleration.

To demonstrate the accuracy of the method, we have simulated
a Draconid as it would be observed by a hypothetical network in
Southern Ontario consisting of three stations with FOVs of 64◦ ×
48◦ that form an equilateral triangle with sides of 100 km and
observe the same volume of the sky (maximum overlap at height
of 100 km; see the second paper for more simulation details). The
accuracy of measurements was σ = 0.5 arcmin.

Fig. 2 shows the map of these model stations and the trail of the
meteor. The left inset of Fig. 3 shows time versus length prior to
the timing correction. One can see that all observations show the
same trend (i.e. dynamics), but they are only offset in time. The
right inset shows the lengths after estimating timing offsets and the
final fitted initial velocity. Note that the observations start deviating
slightly from the fitted velocity line at the end, indicating significant
deceleration.

The effect is more visible in Fig. 4 that shows the computed
lag. Ideally, the lag would remain zero (a vertical line) until the
meteor starts decelerating, and that straight portion would be used
for initial velocity estimation. This may not always be the case
if the deceleration started prior to detection, as shown in the
aforementioned figure. In that case, the initial velocity will be
underestimated and ablation modelling is needed to reconstruct
the true initial velocity (Vida et al. 2018b). Also, notice the larger

Figure 2. Map of the hypothetical moderate FOV network and the simulated
Draconid of mass 6.45 × 10−5 kg, density 211 kg m−3, and initial velocity
23.7 km s−1. The meteor had an entry angle of 65◦. Perspective angles for
stations M1, M2, and M3 were 19◦, 53◦, and 61◦, respectively. The red line
represents the ground track of the meteor.

scatter in lag and fit residuals (Fig. 5) from station M1 due to the
low perspective angle of only 19◦. The perspective angles of the
other two stations M2 and M3 are 53◦ and 61◦, respectively.

Finally, after the reference state vector, the radiant, and the initial
velocity are known, the orbit is computed using equations given in
Appendix C.

3.7 Refining the trajectory solution – a Monte Carlo approach

With a nominal trajectory solution now available, the next goal is to
define uncertainties in the solution and further optimize the solution
using time versus length consistency as the cost function metric.

After estimating the initial ‘best’ solution as described earlier,
the angular residuals of observations from all stations relative to
this solution are computed using equation (22), as well as the
value of the root-mean-square deviation (RMSD). We assume that
the computed RMSD represents the standard deviation of the real
(random) measurement uncertainty of individual stations.

Fig. 5 shows the computed angular residuals for the example
meteor in Fig. 4. Note that station M1 has the highest RMSD, again
due to its low perspective angle. In this case, a low station weight
will prevent these measurements from significantly influencing the
trajectory solution.

Next, Gaussian noise is added to the original measurements
from every station (using equation 36), with a standard deviation
estimated from the measured station residuals. The entire trajectory
is then recomputed from the beginning and a new positional state
vector, radiant, velocity, and orbit are computed using the noise-
added data. This procedure is repeated hundreds of times with
randomized noise injected into every run.

The best solution is chosen as the one with the smallest value of
the f
t function (equation 24). This solution is the one where the
most consistent dynamics of a meteor have been observed across all
stations and which is simultaneously consistent within measurement
uncertainty from all stations. This produces the best dynamical
solution within the geometrical uncertainty.
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Novel meteor trajectory solver 2695

Figure 3. Left: Time versus length before correction. Right: After time offset estimation, all curves are one on top of the other. The cited residual is the average
residual between all lines in seconds.

Figure 4. A lag of a simulated Draconid observed by a moderate FOV
system from three stations. ‘Jacchia fit’ is a fit of equation (3) to the computed
lag.

Figure 5. Angular residuals of a simulated Draconid. RMSD is the root-
mean-square deviation in arcseconds.

In many cases when the geometry is good and the measurements
are reasonably precise, the Monte Carlo refinement will not provide
additional improvement beyond the initial solution. The comparison
of the performance of the Monte Carlo solver to other trajectory
solvers on simulated data is given in the second paper in this
series.

The measurement uncertainty of every estimated parameter
(including the orbital parameters) is computed using the subset of
Monte Carlo trajectories that have values of the f
t function smaller
than that of the initial purely geometrical solution. If all solutions
were to be used for uncertainty estimation, then the uncertainties
would be completely driven by geometric uncertainties. This culling
removes all solutions that have worse fits to the dynamics between
stations than the geometrical solution; thus, the dynamical con-
straints are included. Note that this approach does not estimate
possible systematic errors arising from the astrometric calibration
and position picks, which are system dependent and should be
handled separately.

Fig. 6 shows the geocentric radiants of all Monte Carlo solutions
(the value of the square root of the f
t function is colour coded),
and Fig. 7 shows how the geocentric velocity varies with the radiant
position for the example model Draconid meteor. Fig. 8 shows the
spread in orbital elements, in particular the strong dependence of
individual orbital elements on one another. This behaviour is not
captured simply by describing independently computing standard
deviations of every orbital element.

To more realistically convey trajectory and orbital uncertainties,
we compute covariance matrices of both the orbit and the initial
state vector. Note that the uncertainty in the geocentric radiant is
not properly represented by considering standard deviations in the
right ascension and declination separately. Most two-station meteor
events, particularly those with a low convergence angle, show an
elongated radiant uncertainty. Using a different model Draconid,
just such an example is shown in Fig. 9.

Note that Fig. 6 shows a clear correlation of the timing residuals
(the f
t function) relative to radiant position and a clear global
minimum. In experimentation with model fits, we have found
this behaviour to be a strong indicator of an improvement in the
trajectory solution relative to the geometrical best solution, showing
that the best Monte Carlo trajectory should be taken as the solution
with lowest lag residuals.
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Figure 6. Spread in the geocentric radiant of the model Draconid. The
square root of the timing residual f
t is colour coded. The red circle marks
the position of the initial solution f
t = 0.000 326 and the green circle marks
the position of the best solution f
t = 0.000 300.

Figure 7. Spread in the geocentric radiant for the modelled Draconid; the
geocentric velocity is colour coded. The red circle marks the position of the
initial solution (Vg = 21.05 km s−1) and the green circle marks the position
of the best solution (Vg = 21.00 km s−1).

Figure 8. 2D histogram of the spread in orbital elements for the modelled
Draconid. The red circle marks the position of the initial solution and the
green circle marks the position of the best solution. Brighter bins indicate
more trials within the bin.

Figure 9. A separate simulation done to illustrate how elongated the
radiant uncertainty can be. Here, the geocentric velocity is colour coded.
The red circle marks the position of the initial (geometrical) solution and
the green circle marks the position of the best (lowest lag cost function)
solution. The original model input value of the geocentric velocity was
Vg = 20.893 km s−1. The initial LoS solution underestimated the velocity
by 
Vg = −0.661 km s−1, while the Monte Carlo method slightly overes-
timated by only 
Vg = 0.017 km s−1.
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Novel meteor trajectory solver 2697

We note that for some model geometries, there are cases when no
consistent gradient in the residuals with radiant location is present.
In these cases, the values of the f
t function are randomly scattered
among radiant solutions. In such cases, we found that keeping
the original purely geometric solution produced fits closer to the
simulated trajectory.

4 ME T E O R SH OW E R A N D T R A J E C TO RY
SIMULATO R

By developing a comprehensive meteor trajectory simulator, we
wish to generate synthetic measurements for specific video systems
in realistic conditions. This involves generating model observations
by stipulating real locations of meteor stations, instrument FOVs,
cadence, sensitivity, and measurement uncertainties. In this work,
we require the simulator to produce simulated trajectories of shower
meteors, but sporadic meteors can also be simulated given a sporadic
source model. Meteor showers are simulated by specifying the
radiant, radiant drift, and radiant spread (assumed to be Gaussian),
in addition to an activity profile.

The dynamics of the meteor’s motion within the model are
generated using the meteor ablation model of Campbell-Brown &
Koschny (2004) for which the range of meteoroid masses, the mass
index, the meteoroid bulk density distribution, and the ablation
coefficient are defined as inputs. The attraction of the meteoroid
body to the Earth’s centre due to gravity is taken into account as
well. Higher order gravitational coefficients are disregarded because
their influence is not measurable using these methods. In what
follows, we describe the details of the simulator and demonstrate
that it produces meteor trajectories comparable to real observations.
The trajectory simulator outputs sets of time, right ascension,
declination, and apparent magnitude for every simulated meteor,
emulating what would be seen by observers on the ground.

4.1 Simulating radiants and activity

For each model station, the following parameters are defined:

(i) The geographical coordinates: longitude λ, geodetic latitude
ϕ, and elevation above a WGS84 geoid of the Earth h.

(ii) The sensor system parameters:

(a) cadence [i.e. frames per second (FPS) of the video camera];
(b) maximum possible deviation in time (
tmax) from the

absolute time;
(c) azimuth A and altitude a of the FOV centre for each local

site coordinates;
(d) width and height of the rectangular FOV;
(e) meteor limiting magnitude MLM;
(f) radiant power of a zero-magnitude meteor P0m (see Ayers

1965).

For each station, the time offset from the absolute time and
asynchronous timing shift between cameras is drawn from a uniform
distribution U(0, 
tmax). The time offset and video frame rate are
assumed constant over the duration of the meteor. The measurement
precision of leading edge picks along the meteor track is simulated
by adding Gaussian noise to each simulated measurement with
a standard deviation equal to the scatter in residuals for real
measurements.

To make the resulting trajectory solution averages per shower
have realistic weighted geometries given the station locations,
activity profiles for each shower are required. The activity profile

of simulated meteor showers is defined by the solar longitude of
the peak λmax� and the slope of the activity profile B, where the ac-

tivity is approximated as ZHR = ZHRmax10
−B|λ�−λmax� |

following
Jenniskens (1994). The activity profile is assumed to be symmetric
with respect to the peak. N samples are drawn from the activity
profile using the inverse sampling transform method – every sample
represents one simulated meteor. First, N samples are drawn from a
uniform distribution U(0, 1), producing a vector (y1, . . . , yN). Next,
signs are drawn from a uniform distribution U(− 1, 1), producing
a vector (s1, . . . , sN). The solar longitude of each sample is then
computed as

λ�i = λmax� + sgn(si)
log10 yi

B
, (25)

and only those simulated shower meteors having solar longitudes
that occurred between the local astronomical twilight and dawn of
all observers are used.

Simulated meteor shower radiants are defined by their geocentric
right ascension αg and declination δg taken to be the mean radiant
at the peak together with the standard deviation of the radiant
dispersion σα , σ δ . For times away from the peak, the radiant drifts

α and 
δ in degrees on the sky per degree of solar longitude are
used. The shower geocentric velocity Vg and speed dispersion σVg

plus drift 
Vg (if known) are also assigned.
N of individual meteor radiant realizations are drawn from a von

Mises distribution (a close approximation to the circular normal
distribution) using the centre of distribution at μ = 0 and the
dispersion parameter κ = 1/σ 2. α and δ are drawn independently.
This procedure produces vectors (α′

1, . . . , α
′
N ) and (δ′

1, . . . , δ
′
N ).

These vectors are offsets in right ascension and declination from
the mean radiant position. To compute the proper distribution of
radiants on the celestial sphere centred around (αg, δg), the unit
vector R̂g = (1, 0, 0) is rotated by −δ′

i on the Y-axis, and then by α′
i

on the Z-axis for every coordinate pair i. Next, the resulting vector
is rotated by the negative declination of the mean radiant −δg on
the Y-axis, and then by αg on the Z-axis, and converted to right
ascension and declination:

αgi = atan2
(
R̂giy , R̂gix

)
,

δgi = arcsin R̂giz. (26)

The radiant drift is applied as

αgi = αgi + 
α

(
λ�i − λmax�

)
,

δgi = δgi + 
δ

(
λ�i − λmax�

)
. (27)

Geocentric velocities Vgi are drawn from a Gaussian distribution
N (Vg, σVg ), and a drift in Vg is applied as

Vgi = Vgi + 
Vg

(
λ�i − λmax�

)
. (28)

4.2 Generating meteor state vectors and apparent radiants

The beginning of the luminous flight of the meteor is used as
the point of reference (i.e. instantaneous measurement of the state
vector). This point is randomly generated to be inside the FOVs of at
least two stations in the simulation for a given start height. We use a
start height of 120 km as a reference point between the trajectory and
the ablation model. 120 km was chosen because almost no meteors
end above this height, so the reference point on the trajectory is
before or during the luminous phase.
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The following paragraphs describe the procedure for generating
initial meteor position vectors in 3D space.

Four rays representing the four corners of the FOV of one camera
emanate from the coordinates of the station (equivalent to the centre
of the sensor focal plane). ECI coordinates are used. A frustum
(truncated pyramid) is obtained by taking eight points in total, each
lying on an FOV corner ray at heights −5 and +5 km around
the simulated beginning height for a particular meteor. A random
point is generated inside the frustum of one station, and this random
sampling is repeated until the point is inside a frustum of at least
one another station. The overlap is checked using the quickhull
algorithm (Barber, Dobkin & Huhdanpaa 1996). The resulting 3D
position vector S is taken to be the beginning point of the simulated
meteor in ECI coordinates. All initial positions are generated inside
overlapping FOVs of at least two cameras due to the computational
simplicity of the approach.

From this initial point and the given geocentric radiant, the
apparent radiant and the initial velocity are computed in the ECI
frame. The initial velocity v0 ( m s−1) is computed from the inverse
of the geocentric velocity equation (7) in Appendix C2:

v0 =
√

v2
g + 2 × 6.674 08 × 5.9722 × 1013

|S| (29)

and the apparent values of the radiant (αi, δi) are numerically
inverted using forward mapping equations (see Appendix C2).
The apparent radiant unit vector R̂ is computed by converting
the spherical coordinates (αi, δi) to their ECI components using
equation (5). Note that vg is converted into the initial velocity by
assuming that the stations are moving in the ECI coordinates, and
thus the whole coordinate system rotates with the Earth, making a
correction to the meteor velocity for Earth’s rotation unnecessary;
such a correction would be needed for an ECEF treatment. Radiants
with zenith angles zc > 80◦ are skipped to avoid simulating meteors
that do not propagate down in the atmosphere.

4.3 Simulating meteoroid dynamics

To simulate realistic meteor dynamics, the meteoroid ablation model
of Campbell-Brown & Koschny (2004) is used. For each shower,
a range of visible masses mmin, mmax and a mass index s based on
literature values for a particular shower are defined. The masses
are sampled using inverse transform sampling from the cumulative
number as a function of mass distribution:

f (m) = m1−s . (30)

Meteoroid densities are sampled uniformly either from a user-
defined range or using density distributions given by Moorhead
et al. (2017). The apparent ablation coefficient σ (usually given in
s−2 km−2) is applied in the ablation model through modification of
the energy needed to ablate a unit mass L (J kg−1; make sure to
convert σ to s−2 m−2), which is computed as

L = �

2σ�
, (31)

where � = 0.5 is the heat transfer coefficient and � = 1.0 is the
drag coefficient. Note that in the field of aerodynamics the notation
Cd is used for the drag coefficient, where � = 2Cd. The ablation
model provides vectors of height, length, and luminosity along the
meteor path from the beginning point with a temporal resolution
of 0.001 s. Note that σ is used throughout the text with different
meanings. In equation (31), it is used for the ablation coefficient,
while at all other places it is used for standard deviation.

4.4 Generating synthetic trajectory data

The duration tmeteor of a meteor is obtained from the ablation model.
We assume that the beginning time t = 0 corresponds to a given
solar longitude for the corresponding reference Julian date JDref. A
vector of times is obtained by sampling the range (0, tmeteor) with
the step 1/FPS.

The instantaneous model luminosity I at a given time is converted
to a range-corrected apparent magnitude Mv and only those points
above the meteor limiting magnitude of individual stations are
taken:

MA = −2.5 log10

I

P0m
,

Mv = MA − 5 log10
105

r
, (32)

where MA is the absolute magnitude (magnitude at 100 km range)
and r is the range in metres from the station to the meteor. P0m is the
power of a zero-magnitude meteor for the appropriate bandpass
taken from Weryk & Brown (2013). No correction for angular
velocity or extinction loss is included.

The 3D meteor positions are projected to local spherical coordi-
nates of stations to generate synthetic observations. We simulate the
real movement of the stations due to Earth’s rotation by computing
ECI coordinates ECIj of stations at every model point in time tk.
The position of the meteor in ECI coordinates at time tj is computed
as

T j = S − d(tj )R̂, (33)

where S is the initial position at t = 0 and R̂ is the apparent
radiant unit vector in ECI coordinates. The additional decrease
in height due to Earth’s gravity is applied using equation (21),
where 
h(tj) is the decrease in height at every point in time
due to gravity since the beginning (in metres). This procedure
simulates the curvature of the trajectory due to gravity, assuming
the pull is perpendicular to the WGS84 reference ellipsoid. 
h(tj)
is computed as described in Appendix A. A unit vector pointing
from the station to the position of the meteor on the trajectory is
computed as

r̂ = T j − ECIj

|T j − ECIj | . (34)

We simulate the observational precision of a system by adding
Gaussian noise with a standard deviation σ , derived from real
measurements of the actual systems, to the synthetic observa-
tions. We separate the vector r̂ into orthogonal components û
and v̂:

ẑ = [0, 0, 1],

û = r̂ × ẑ
|r̂ × ẑ| ,

v̂ = û × r̂
|û × r̂| . (35)

The direction vector (all in ECI) with the added noise is then

r ′ = r̂ + N (0, σ ) û + N (0, σ ) v̂, (36)

where N (0, σ ) is a scalar drawn from a Gaussian distribution
with a mean of 0 and a standard deviation of σ . The samples are
drawn separately for each term. The direction vector is converted to
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equatorial coordinates in the epoch of date:

r̂ ′ = r ′

|r ′| ,

αj = atan2
(
r̂ ′
y, r̂

′
x

)
,

δj = arcsin r̂ ′
z. (37)

Finally, the appropriate timing offset 
t for a given station
(randomized on a per meteor basis) is added to time tj, com-
pleting the set of synthetic measurements for each simulated
meteor.

At the end of this procedure, one obtains a set of Nmeas synthetic
measurements from every station for every generated meteor.
Synthetic meteors are uniquely defined by the Julian date of their
beginning JDref, set of relative times since the beginning (t0, . . . , tj),
a set of right ascensions (α0, . . . , αj) and declinations (δ0, . . . , δj)
in the epoch of date. Note that the epoch here is not J2000; to avoid
confusion, we convert the model measurements to local azimuth
(A0, . . . , Aj) and altitude (a0, . . . , aj) in the epoch of date from a
particular station using equations given in Appendix F.

Although the simulator reproduces many features of the observed
data, a major difference with real meteors is that synthetic trajecto-
ries all start within the FOVs of at least two stations. It is not clear
that this limitation is significant for the current work. While this
might be alleviated by generating the state vectors slightly outside
the FOV of one camera, this would be at the expense of having to
compute the propagation as well, which would significantly increase
the computational load of finding a synthetic meteor that is actually
visible from two or more stations.

5 C O N C L U S I O N

A novel Monte Carlo meteor trajectory method was developed
that takes the dynamics of meteors into account without as-
suming any formulated meteor propagation model. This lever-
ages the fact that modern meteor electro-optical systems have
sufficient precision to routinely record deceleration, allowing an
entirely independent check on the solution consistency between
stations.

Improvements in weighting multistation observations as well as
a new method of initial velocity estimation have been proposed. A
limitation of the new Monte Carlo solver is that it does not work for
meteors with no temporal overlap between stations. In those cases,
a dynamical model must be used to estimate timing differences and
the velocity, but the radiant and its uncertainty can be estimated
using purely geometrical methods, similar to earlier approaches
(Gural 2012; Weryk & Brown 2012).

We develop a meteor trajectory simulator that uses a numerical
meteor ablation model to simulate meteor dynamics. The simulator
will be used in the second paper in this series to investigate radiant
and velocity accuracy that can be achieved for various real-world
optical systems and meteor showers.

Finally, we provide a detailed set of equations and explanations
for estimating meteor trajectories and computing orbits starting just
from a set of multistation observations. We also have made the
associated code base openly available for all to use. Additional
details are included in the accompanying appendices. An improved
version of the MPF method incorporating the findings of this paper
will be published in the future. We invite readers to continue to the
second paper in this series for results.

5.1 Note on code availability

Implementation of the meteor simulator as well as implementation
of all meteor solvers used in this work are published as open source
on the following GitHub web page: https://github.com/wmpg/West
ernMeteorPyLib. Readers are encouraged to contact the authors in
the event they are not able to obtain the code online.
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A P P E N D I X A : B E N D I N G O F T H E
T R A J E C TO RY D U E TO G R AV I T Y

The straight-line approximation for trajectories breaks down in the
case of long (>4 s) meteors, when they will show vertical curvature
that should be visible even with less precise systems. At a height
of 100 km, the gravitational acceleration is g ∼ 9.5 m s−2, although
it changes as the meteor descends through the atmosphere with the
classical relation

g(r) = GME

r2
, (A1)

where ME is the mass of the Earth and r is the distance of the meteor
from the centre of the Earth. To compute the changing value of the
gravitational acceleration, we assume that at the begin point, the
downward vertical component of the meteor’s velocity vz is equal
to the vertical component of the initial velocity:

vz = −v0 cos zc, (A2)

where v0 is the initial velocity and zc is the apparent zenith angle.
Thus, the gravitational acceleration at a relative time t after the
beginning of the meteor is

g(t) = GME

(r0 + vzt)2
, (A3)

where ME is the mass of the Earth and r0 is the distance from the
centre of the Earth to the beginning height of the meteor. The total
drop of the meteor due to gravity after time T is then


h(T ) =
∫ T

0
g(t)t dt . (A4)

After integration, we obtain the following relation:


h(T ) = GME

v2
z

(
r0

r0 + vzT
+ ln

r0 + vzT

r0
− 1

)
. (A5)

To avoid domain issues when vz ≈ 0, we only use this expanded
equation if |vz| > 100 m s−1, otherwise we use equation (1) with r =
r0 to compute g and the classical way of computing the additional
drop in height due to gravity:


h(T ) = 1

2
gT 2. (A6)

Applying 
h to the vertical component of the meteor at every point
in time effectively simulates the curvature of the meteor’s trajectory
due to gravity.

APPENDI X B: D I STA NCE BETWEEN LI NES IN
3D SPAC E

Let vector P be the position of the observer in an arbitrary
rectangular coordinate system and U be the direction vector of
the line of sight emanating from the observer. Let S be the position
of the state vector and R be the radiant vector. The closest points of
approach can be calculated as

w = P − S,

a = U · U,

b = U · R,

c = R · R,

d = U · w,

e = R · w,

QC = be − cd

ac − b2
,

TC = ae − bd

ac − b2
,

Q = P + QCU,

T = Q + TC R,

d = | Q − T |, (B1)

where Q is the point on the observer’s line of sight closest to the
radiant line and T is the point on the radiant line closest to the
line of sight of the observer. d is the distance between those two
points. The equations are taken from Eberly (2006) in a modified
form.

APPENDI X C : O RBI T COMPUTATI ON

The orbit is computed from four parameters: the apparent radiant
unit vector R̂, the initial velocity v0, the ECI coordinates of the
state vector S, and the reference Julian date of the beginning of
the meteor JDref. The equations below assume that the radiant
and the state vector are given in the epoch of date, not J2000.
Furthermore, we assume that the location of the state vector is at
the beginning of the meteor, not at an average point on the trajectory.
The state vector S should be in metres and the initial velocity v0

in m s−1 to be consistent with constants and parameter units used
herein.

First, the geocentric latitude of the state vector is calculated as

ϕ′ = atan2
(
Sz,

√
S2

x + S2
y

)
. (C1)

Next, care must be taken to use the Barycentric Dynamical Time
(TDB) in calculations where necessary. For epochs in 1972 and later,
the dynamical time is simply calculated as the Julian date with the
added leap seconds 
t up to the given JD, plus a constant of 32.184 s
(Clark 2010). The number of leap seconds can be obtained from the
United States Naval observatory FTP site.1 For example, 
t for a
meteor observed between 2006 and 2009 is 33 s, while for a meteor

1USNO leap seconds file, ftp://maia.usno.navy.mil/ser7/tai-utc.dat (ac-
cessed 2018 February 18).
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observed after 2017 January 1 (until a future leap second is added)
is 37 s.

TDB = JDref + 
t + 32.184

86 400
. (C2)

Next, the geodetic latitude ϕ and the longitude λ of the beginning
point of the meteor projected on to the Earth’s surface are calculated
from the ECI coordinates of the state vector using the method
described in Appendix D2.

C1 Correcting the apparent radiant and the velocity for
Earth’s rotation

If the trajectory was estimated with the IP method, or if the stations
were kept fixed, one needs to correct the radiant for Earth’s rotation.
Please note the important fact that the correction described in this
section must not be applied if the ECI coordinates of the stations
were moving in time in the trajectory estimation procedure. Thus,
if the station coordinates were moving during the meteor event, the
velocity vector is simply calculated as

v0 = v0 R̂, (C3)

and the rest of the equations in this section can be skipped.
Otherwise, the procedure described below must be followed.

The rotation velocity of the Earth (in m s−1) at the height of the
state vector can be calculated as

ve = 2π |S| cos ϕ′

86 164.090 53
, (C4)

where the number in the denominator is the duration of the sidereal
day in seconds.

Next, as the direction of the Earth’s rotation vector is always
towards the East, we can calculate the velocity vector of the meteor
v0 as

v0x = v0R̂x − ve cos αe,

v0y = v0R̂y − ve sin αe,

v0z = v0R̂z, (C5)

where αe is the right ascension of the direction of the rotation
of the Earth. This can be calculated using the equations given in
Appendix F if we take the azimuth to be A = π/2 (i.e. due East)
and elevation a = 0.

It is very important to note that this correction only influences
the direction of the radiant, but not the initial velocity itself. This
is only true if ECI coordinates are used throughout, regardless of
keeping the stations fixed or not.

C2 Geocentric radiant

First, we calculate equatorial coordinates of the apparent radiant
following Ceplecha (1987):

v̂0 = v0

|v0| ,

α = atan2
(
v̂0y, v̂0x

)
,

δ = arcsin v̂0z. (C6)

The geocentric velocity is calculated as

vg =
√

v2
0 − 2 × 6.674 08 × 5.9722 × 1013

|S| , (C7)

where the second term under the square root is the square of the
escape velocity (2GME/r) at the height of the state vector. Next, the
zenith attraction correction is applied using the Schiaparelli method
(Gural 2001):

zc = arccos
(
sin δ sin ϕ′ + cos δ cos ϕ′ cos

(
θ ′ − α

))
,


zc = 2 atan2
(

(v0 − vg) tan
zc

2
, v0 + vg

)
,

zg = zc + |
zc|, (C8)

where zc is the apparent zenith angle, θ ′ is the apparent local sidereal
time (see Appendix E), 
zc is the zenith attraction correction, and
zg is the zenith angle of the geocentric radiant.

The azimuth Ac of the radiant (possibly corrected for Earth’s
rotation) is calculated using the equations given in Appendix G. The
apparent α and δ should be used, and care must be taken to use the
geocentric latitude ϕ′ instead of the geodetic latitude. The geocentric
radiant in equatorial coordinates (αg, δg) is then calculated using
the equations given in Appendix F, where the azimuth is A = Ac,
the elevation is a = (π/2) − zg, and the geocentric latitude ϕ′ must
be used as well.

Next, the radiant is precessed from the epoch of date (JDref) to
J2000 using the equations given in Appendix H. The geocentric
ecliptic longitude λg and latitude βg are calculated with equations
given in Appendix I; care must be taken to use the Julian date of
J2000 (JD = 2 451 545) when computing ecliptic coordinates, not
JDref.

C3 Precessing ECI coordinates to J2000

As the ECI coordinates of the meteor are in the epoch of date, they
have to be precessed to J2000. This can easily be done by converting
them to spherical coordinates:

rECI = |S|,
αECI = atan2

(
Sy, Sx

)
,

δECI = arccos
Sz

rECI
, (C9)

where rECI is the distance from the centre of the Earth to the reference
position of the meteor, and αECI and δECI are angular components.
αECI and δECI are precessed to J2000 from JDref using equations
given in Appendix H, after which α′

ECI and δ′
ECI are obtained.

Finally, these coordinates can be converted back to rectangular ECI
coordinates in J2000:

S ′
x = rECI sin δ′

ECI cos α′
ECI,

S ′
y = rECI sin δ′

ECI sin α′
ECI,

S ′
z = rECI cos δ′

ECI. (C10)

C4 Position and the velocity of the Earth

JPL DE430 ephemerids (Folkner et al. 2014) are used for computing
Cartesian heliocentric ecliptic coordinates and the velocity of the
Earth at the reference dynamical time TDB. As the implementation
of the ephemerids does not allow the calculation of the heliocentric
ecliptic coordinates of the Earth directly, the following procedure
was adopted:
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(i) The position REMB and the velocity V EMB of the Earth–Moon
barycentre with respect to the Solar system barycentre are obtained
from the model in heliocentric equatorial coordinates (kilometres).

(ii) The position RSB and the velocity V SB of the centre of the
Sun with respect to the Solar system barycentre are obtained from
the model in heliocentric equatorial coordinates (kilometres).

(iii) The position REEM and the velocity V EEM of the centre of
the Earth with respect to the Earth–Moon barycentre are obtained
from the model in heliocentric equatorial coordinates (kilometres).

The heliocentric position and the velocity of the centre of the
Earth in equatorial coordinates are then computed as

REH = REMB − RSB + REEM,

V EH = V EMB − V SB + V EEM, (C11)

where REH and V EH are in km and km s−1, respectively.

C5 Heliocentric coordinates of the meteor

Coordinates of the meteor in heliocentric equatorial coordinates
can be calculated by simply adding the position of the Earth in
heliocentric equatorial coordinates to the ECI coordinates of the
meteor in J2000:

M = REH + S′

1000
. (C12)

Care must be taken to match the units, as the ECI coordinates
were given in metres, while M should be in kilometres. Both the
coordinates of the meteor M and the velocity of the Earth V EH have
to be converted to the ecliptic reference frame by rotating them on
the X-axis by the negative value of the mean obliquity of the Earth
at J2000, εJ2000 = 23.439 291 1111◦:⎡
⎢⎢⎣

xecliptic

yecliptic

zecliptic

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

1 0 0

0 cos(−εJ2000) sin(−εJ2000)

0 − sin(−εJ2000) cos(−εJ2000)

⎤
⎥⎥⎦
⎡
⎢⎢⎣

xequatorial

yequatorial

zequatorial

⎤
⎥⎥⎦,

(C13)

after which M ′ and V ′
EH in heliocentric ecliptic coordinates are

obtained.
The heliocentric velocity vector of the meteor is calculated by

adding the geocentric velocity of the meteor to the velocity of the
Earth. As V ′

EH is in heliocentric ecliptic coordinates, we convert the
geocentric velocity into an ecliptic velocity vector (λg and βg can
be computed using equations in Appendix I):

vgEx = −vg cos λg cos βg,

vgEy = −vg sin λg cos βg,

vgEz = −vg sin βg (C14)

and add it to the velocity of the Earth around the Sun to obtain the
heliocentric velocity vector vH:

vH = V ′
EH + vgE

1000
, (C15)

where vH and V ′
EH are in km s−1, and vgE is in m s−1.

C6 Heliocentric ecliptic radiants

Tsuchiya et al. (2017) have shown that low-velocity meteor showers
suffer from large dispersion in geocentric equatorial coordinates
due to the component of Earth’s velocity. They propose calculating

radiants in heliocentric ecliptic coordinates, as slower meteor
showers show significantly lower dispersions in that coordinate
system. For completeness, we give the equations below.

The unit heliocentric velocity vector of the meteoroid is calcu-
lated as

V̂ c = vH

|vH| (C16)

and the radiant in heliocentric ecliptic coordinates is then calculated
as

λh = atan2
(
V̂cy, V̂cx

) + π,

βh = − arcsin V̂cz. (C17)

C7 Keplerian orbital elements

The solar longitude λ� can be calculated from the ecliptic heliocen-
tric position of the Earth R′

EH, which can be computed by rotating
the equatorial heliocentric position REH using equation (13).

λ� = atan2
(
R′

EHy, R
′
EHx

) + π. (C18)

The specific orbital energy ε can be calculated as

ε = |vH|2
2

− μ�
|M ′| , (C19)

where vH is the heliocentric ecliptic velocity vector of the me-
teor, μ� = 1.327 124 400 18 × 1011 km3 s−2 is the gravitational
constant of the Sun, and M ′ is the heliocentric ecliptic position
vector of the meteoroid.

The semimajor axis in au is

a = −μ�
2εrau

, (C20)

where rau = 149 597 870.7 km is one astronomical unit in kilome-
tres. Mean motion in radians per day can be calculated as

n = 86 400

√
GM�

(1000|a|rau)3 , (C21)

where G = 6.673 84 × 10−11 m3 kg−1 s−2 is the gravitational con-
stant and M� = 1.988 55 × 1030 kg is the mass of the Sun. The
orbital period in years is

T = 2π

86 400YS

√
(raua)3

μ�
, (C22)

where YS = 365.256 363 004 is the sidereal year in days. Next, we
calculate the orbital angular momentum vector

h = M ′ × vH. (C23)

The inclination is then simply

i = arccos
hz

|h| (C24)

and the eccentricity is then the magnitude of the eccentricity vector:

e = vH × h
μ�

− M ′

|M ′| ,

e = |e| . (C25)

We follow Jenniskens et al. (2011) on calculating the perihelion
distance:

q =
{ |M ′ |+e·M ′

2 , e = 1,

a(1 − e), otherwise.
(C26)
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The aphelion distance is then simply

Q = a(1 + e). (C27)

The ascending node � is calculated following Clark (2010):

k = [0, 0, 1],

n = k × h, (C28)

� =
{

0, |n| = 0,

atan2
(
ny, nx

)
, otherwise,

(C29)

where n is a vector pointing from the Sun to the ascending node.
Please note that the ascending node loses meaning for inclinations
close to 0◦; thus, we keep the node at 0◦ when the magnitude of the
n vector is 0.

If |n| 	= 0, the argument of perihelion ω is calculated as

ω = arccos
n · e
|n||e| , (C30)

and if ez < 0, then ω = 2π − ω. If, on the other hand, |n| = 0, then

ω = arccos
ex

|e| . (C31)

The longitude of perihelion � is simply

� = � + ω. (C32)

True anomaly ν is calculated as

ν = arccos
e · M ′

|e||M ′| , (C33)

and if M ′ · vH < 0, then ν = 2π − ν.
The eccentric anomaly E is

E = atan2
(√

1 − e2 sin ν, e + cos ν
)

, (C34)

from which the mean anomaly M can be calculated as

M = E − e sin E. (C35)

The time in days since the last perihelion passage, reference to
TDB, is


t� = Ma3/2

k
, (C36)

where k = 0.017 202 098 95 au3/2 d−1 (solar mass)−1/2 is the Gaus-
sian gravitational constant.

Finally, we calculate the Tisserand parameter with respect to
Jupiter as

TJ = aJ

a
+ 2

√
(1 − e2)

a

aJ
cos i, (C37)

where aJ = 5.204 267 au is the semimajor axis of Jupiter.

APP ENDIX D : EARTH-CENTRED INERTIAL
C O O R D I NAT E S

The ECI coordinates are a Cartesian coordinate system where the
X–Y plane coincides with the equatorial plane of the Earth, and the
X-axis passes through the equinox of the given epoch. The Z-axis
passes through the Earth’s North pole. As the coordinate system is
permanently fixed to the celestial sphere, a fixed point on the surface
of the Earth will have changing coordinates in time. As we assume
that the observations are given in the epoch of date, we keep the
ECI coordinates in the epoch of date as well.

Let the distance from the centre of the Earth to the position given
by geographical coordinates in the WGS84 system be calculated as
follows:

N = re√
1 − e2

e sin2 ϕ
, (D1)

where re is the equatorial radius of the Earth as defined by
the WGS84 system, re = 6 378 137.0 m, and ee is the equatorial
ellipticity of an oblate Earth:

ee =
√

1 − r2
e

r2
p

, (D2)

where rp is the polar radius of the Earth, rp = 6 356 752.314 245 m.
The polar ellipticity is

ep =
√

1 − r2
e − r2

p

r2
p

. (D3)

D1 Converting geographical coordinates to ECI

Let ϕ be the geodetic latitude, λ the longitude, h the height above a
WGS84 model for Earth, and θ ′ ar radius of the Earth, eqn 1c885-
10237 . The polar ellipticity is D1 Converting geographical co-
ordinates to ECI Let ϕ be the geodetic latitude, λ the longitude,
h the height above a WGS84 model for Earth, and eqn 149a9-
1ffbe 2012he apparent local s θ ′ can be calculated using the
procedure described on p. 88 of Meeus (1998) and Clark (2010);
see Appendix E for equations.

First, the coordinates are transformed into ECEF coordinates:

xECEF = (N + h) cos ϕ cos λ,

yECEF = (N + h) cos ϕ sin λ,

zECEF = (
(1 − e2

e )N + h
)

sin ϕ. (D4)

The radius of the Earth at the given geodetic latitude is then

Rh =
√

x2
ECEF + y2

ECEF + z2
ECEF. (D5)

Using the geocentric latitude ϕ′,

ϕ′ = atan2

(
zECEF,

√
x2

ECEF + y2
ECEF

)
. (D6)

The ECI coordinates in the epoch of date are then calculated as

xECI = Rh cos ϕ′ cos θ ′,

yECI = Rh cos ϕ′ sin θ ′,

zECI = Rh sin ϕ′. (D7)

D2 ECI to geographical coordinates

Given the apparent sidereal time at Greenwich θ ′
0 (see equation and

Clark ( 2010 ); see Appendix E for equations. Fi), the longitude
can be calculated as

λ = atan2 (yECI, xECI) − θ ′
0. (D8)
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d into ECEF coordinates: The radius of the Earth at the given
geodetic latitude is then Usin

p =
√

x2
ECI + y2

ECI,

ϑ = atan2
(
zECIre, prp

)
,

ϕ = atan2
(
zECI + e2

prp sin3 ϑ, p − e2
ere cos3 ϑ

)
. (D9)

Care must be taken when calculating the height near exact poles
due to numerical instabilities. If the coordinates are near the
poles, and we take this as being within 1 km from the poles,
which can be determined by testing whether both conditions |xECI|
< 1000 and |yECI| < 1000 are true, the height is calculated
as

h = |zECI| − rp, (D10)

otherwise the height above a WGS84 ellipsoid is calculated as

N = re√
1 − e2

e sin2 ϕ
,

h = p

cos ϕ
− N. (D11)

ting the height near exact poles due to numerical instabilities. If the
coordinates are near the poles, and we take this as being within 1 km
from the poles, which can be determined by testing whether both
conditions | x ECI | < 1000 and | y ECI | < 1000 are true, th2012)
has to be applied.

A P P E N D I X E: LO C A L A P PA R E N T S I D E R E A L
TIME

First, we calculate the nutation components 
ψ and 
ε in equa-
tion (f the height above meansea level (MSL)) as given in chapter 22
of Meeus (1998). We use the set of equations that give around 0.5
arcsec precision, which we deem sufficient for needs of meteoroid
orbits. The dynamical time TDB is used. � is the longitude of the
ascending node of the Moon’s mean orbit on the ecliptic measured
from the mean equinox of the date, L is the mean longitude of the
Sun, and L′ is the mean longitude of the Moon. The values are in
degrees.

T = TDB − 2 451 545

36 525
,

� = 125.044 52 − 1934.136 261T ,

L = 280.4665 + 36 000.7698T ,

L′ = 218.3165 + 48 1267.8813T . (E1)

The nutation in longitude 
ψ and the nutation in obliquity 
ε are
calculated in arcseconds as


ψ = −17.2 sin � − 1.32 sin 2L − 0.23 sin 2L′ + 0.21 sin 2�,


ε = 9.2 cos � + 0.57 cos 2L + 0.1 cos 2L′ − 0.09 cos 2�. (E2)

Next, we calculate the mean sidereal time of the Earth (Greenwich
Sidereal Time) in degrees. Note that the time used here is not

dynamical.

t = JD − 2 451 545

36 525
,

θ0 = 280.460 618 37 + 360.985 647 366 29(JD − 2 451 545)

+ 0.000 387 933t2 − t3

38 710 000
. (E3)

The mean obliquity of the Earth in arcseconds ε0 is calculated using
U, which is the time measured in units of 10 000 Julian years from
J2000 (note that the dynamical time is used):

U = TDB − 2 451 545

3 652 500
,

ε0 = 84 381.448 − 4680.93U

− 1.55U 2

+ 1999.25U 3

− 51.38U 4

− 249.67U 5

− 39.05U 6

+ 7.12U 7

+ 27.87U 8

+ 5.79U 9

+ 2.45U 10. (E4)

Sidereal Time) in degrees. Note that the time used here is not
dynamical. The mean obliquity o

θ ′
0 = θ0 + 
ψ

3600
cos

ε0 + 
ε

3600
. (E5)

f the Earth in arcseconds ε 0 is calculated using U , which is the
time measured in units of 10 000 Julian years from J2000 (note that
the dynam 2π] range using modulus operator:

θ ′
0 = θ ′

0 mod 2π. (E6)

parent sidereal time at Greenwich θ ′ etion> converting to

θ ′ = (θ ′
0 + λ + 2π) mod 2π, (E7)

> radians, care must be taken to wrap the computed value inside
the [0, eqn 16e86-1928d ] range using

A P P E N D I X F: H O R I Z O N TA L TO E QUATO R I A L
C O O R D I NAT E C O N V E R S I O N

Right ascension α and declination δ are calculated from azimuth
A, altitude a, Julian date JD, and geographical coordinates of the
observer, longitude λ and latitude ϕ, as

H = atan2 (− sin A, tan a cos ϕ − cos A sin ϕ) ,

α = θ ′ − H,

δ = arcsin (sin ϕ sin a + cos ϕ cos a cos A) , (F1)

where H is the local hour angle and θ ′ is the apparent local sidereal
time (see Appendix E).
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A P P E N D I X G : EQUATO R I A L TO H O R I Z O N TA L
C O O R D I NAT E C O N V E R S I O N

The azimuth A and altitude a are calculated from right ascension α,
declination δ, Julian date JD, and geographical coordinates of the
observer, longitude λ and latitude ϕ, as

H = θ ′ − α,

A = π + atan2 (sin H, cos H sin ϕ − tan δ cos ϕ) ,

a = arcsin (sin ϕ sin δ + cos ϕ cos δ cos H ) , (G1)

where H is the local hour angle and θ ′ is the apparent local sidereal
time (see Appendix E).

APP ENDIX H : PRECESSING EQUATO RIAL
C O O R D I NAT E S

We follow the rigorous method of Meeus (1998), pp. 134–135,
for precessing the right ascension α and declination δ from epoch
JD0 to epoch JD. The beginning of each epoch is defined by their
respective Julian dates. Please note that ζ , z, and θ are given in
degrees.

T = JD0 − 2 451 545

36 525
,

t = JD − JD0

36 525
,

ζ = 1

3600

[
(2306.2181 + 1.396 56T − 0.000 139T 2)t

+ (0.301 88 − 0.000 344T )t2 + 0.017 998t3
]
,

z = 1

3600

[
(2306.2181 + 1.396 56T − 0.000 139T 2)t

+ (1.094 68 + 0.000 066T )t2 + 0.018 203t3
]
,

θ = 1

3600

[
(2004.3109 − 0.853 30T − 0.000 217T 2)t

− (0.426 65 + 0.000 217T )t2 − 0.041 833t3
]
,

A = cos δ sin(α + ζ ),

B = cos θ cos δ cos(α + ζ ) − sin θ sin δ,

C = sin θ cos δ cos(α + ζ ) + cos θ sin δ,

α′ = atan2(A, B) + z,

δ′ = arcsin C, (H1)

where α′ and δ′ are precessed coordinates. If the declination is close
to the celestial poles (which we define as less than 0.5◦ from the
poles), it is calculated differently due to numerical instabilities. If
(90◦ − |δ|) < 0.5◦ is true, the declination should be calculated as

δ′ = arccos
√

A2 + B2. (H2)

APPENDI X I: ECLI PTI C COORDI NATES

The geocentric right ascension αg and declination δg at the given
epoch (the epoch defined by a Julian date JD, usually at J2000; thus,
JD = 2 451 545) can be converted to geocentric ecliptic longitude λg

and latitude βg with the procedure described below. First, a precise
obliquity of the Earth at the JD of the epoch has to be calculated; 
ε

can be calculated using equation (l instabilities. If (90◦ − ) and the
mean obliquity ε0 using equation (ld be calculated as APPENDIX
I: ECLIPTIC COORDINATES The geocentric right ascension α

g and declinat). The true obliquity of the Earth in degrees is then
simply

ε = ε0 + 
ε

3600
. (I1)

The ecliptic longitude and latitude are then

λg = atan2
(
sin ε sin δg + sin αg cos δg cos ε, cos αg cos δg

)
,

βg = arcsin
(
cos ε sin δg − sin αg cos δg sin ε

)
. (I2)

This paper has been typeset from a TEX/LATEX file prepared by the author.
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