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Abstract

Observations have revealed rich structures in protoplanetary disks, offering clues about their embedded planets.
Due to the complexities introduced by the abundance of gas in these disks, modeling their structure in detail is
computationally intensive, requiring complex hydrodynamic codes and substantial computing power. It would be
advantageous if computationally simpler models could provide some preliminary information on these disks. Here
we apply a particle-only model (that we developed for gas-poor debris disks) to the gas-rich disk, HL Tauri, to
address the question of whether such simple models can inform the study of these systems. Assuming three
potentially embedded planets, we match HL Tau’s radial profile fairly well and derive best-fit planetary masses and
orbital radii (0.40, 0.02, 0.21 Jupiter masses for the planets orbiting a 0.55Me star at 11.22, 29.67, 64.23 au). Our
derived parameters are comparable to those estimated by others, except for the mass of the second planet. Our
simulations also reproduce some narrower gaps seen in the ALMA image away from the orbits of the planets. The
nature of these gaps is debated but, based on our simulations, we argue they could result from planet–disk
interactions via mean-motion resonances, and need not contain planets. Our results suggest that a simple particle-
only model can be used as a first step to understanding dynamical structures in gas disks, particularly those formed
by planets, and determine some parameters of their hidden planets, serving as useful initial inputs to hydrodynamic
models which are needed to investigate disk and planet properties more thoroughly.

Key words: celestial mechanics – planet–disk interactions – planets and satellites: detection – planets and satellites:
fundamental parameters – protoplanetary disks

1. Introduction

Planets are believed to form in protoplanetary disks. While
doing so, they create complex symmetric and asymmetric
morphological structures. These include density enhancements
due to particle trapping in a planet’s pressure bump and mean-
motion resonances (MMRs), as well as gap clearing due to
dynamical ejection of disk particles as they come into close
encounter with the forming planets. In fact, numerical
simulations have shown that a planet with only 0.1 Jupiter mass
(MJ) is capable of pushing the dust away and significantly
changing the dust-to-gas ratio of a protoplanetary disk in
its vicinity, while a planet mass of at least 1MJ is needed to
also form a gap in gas surface density (see for instance,
Paardekooper & Mellema 2004; Price et al. 2017). Such
structures provide a wealth of information about the planets
that are otherwise difficult to directly observe (such as a
planet’s mass), and many studies have attempted to put
constraints on the planetary parameters based on how planets
affect the distribution of gas and dust in protoplanetary disks
(see for instance, Fouchet et al. 2010; van der Marel et al. 2013;
Kanagawa et al. 2015, 2016).

Protoplanetary disks are gas-rich (typical gas-to-dust ratio of
100:1 (Collins et al. 2009) though this changes as they evolve)
and a full exploration of their dynamics by numerical methods
is expensive in terms of computing power. Such disks also
show many features which are similar to those observed in
debris disks, i.e., disks of solid particles whose interactions are
much easier to model computationally than gas-rich disks. Here
we ask the question: how well can the parameters of planets
embedded in a protoplanetary disk be extracted using simpler
“particle-only” methods? Indeed we find that the masses and
radial distances of the planets that may be sculpting the gaps in

the HL Tau disk can be extracted with accuracy comparable to
that of full hydrodynamic simulations, assuming that there are
three hidden planets in the disk. Thus quick, particle-only
simulations of protoplanetary disks may be a useful tool for
preliminary analyses, and provide useful initial starting points
for parameter searches with more complete models.
It should be noted that planet formation is not the only

mechanism that is thought to explain the origin of the gap
structures in protoplanetary disks. For instance, in a study by
Zhang et al. (2015), volatile condensation and rapid pebble
growth beyond the snow line are used to reproduce structures
such as those observed in the HL Tau disk. On the other hand,
secular gravitational instability is also discussed in the literature
as one mechanism that could create ring structures in
protoplanetary disks (see for instance Takahashi & Inutsuka
2014). Although these mechanisms may alternatively be used
to explain the structures observed in the HL Tau disk, gap
opening by planets embedded in this disk remains a strong
possibility, and this is what we will consider in the present
study. The fact that the eccentricities of HL Tau’s rings
increase with increasing distance, and that many of the rings
are nearly in a chain of MMRs, indicates that the architecture of
the HL Tau disk likely arises from embedded planets (see
ALMA Partnership et al. 2015).
We begin with a description of the literature on the topics of

HL Tau’s embedded planets in Section 1.1, before turning to
our own modeling efforts in Section 2 where we discuss our
simulations to match the observed intensity profile of the HL
Tau disk including the fitting procedure as well as uncertainty
measurements. We discuss our results in Section 3, which
includes a comparison to other studies as well as a discussion
of MMR gaps in the HL Tau disk. Finally, a summary and
conclusions are provided in Section 4.
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1.1. HL Tau Studies to Date

Recent high-resolution observations of a proplanetary disk
around the young (∼1Myr) T Tauri star HL Tauri by the
Atacama Large Millimeter/submillimeter Array (ALMA) have
revealed unprecedented detailed structures, which are consid-
ered likely to be the signatures of planets in the making. This
image was taken as part of ALMA’s science verification phase
in 2014 October and was released a month later (see
NRAO 2014). The disk was observed in dust continuum
emission at 233 GHz (1.28 mm) using 25–30 antennas and a
maximum baseline of 15.24 km as part of ALMA’s Long
Baseline Campaign, and achieved an angular resolution of 35
mas, equivalent to 5 au at HL Tau’s distance of 130 pc. It
reveals a series of concentric gaps that have become the subject
of many studies, shedding light on the properties of the planets
that are believed to be carving out these gaps, and providing a
better understanding of the processes involved in the formation
and evolution of planets and planetary systems. Table 1 lists
orbital radii and the masses of the potentially hidden planets in
five of the seven gaps that can be identified in the ALMA
image, derived from past studies that used hydrodynamic and
numerical simulations as well as analytic estimates which we
briefly review here. We will compare the planetary masses
derived in the literature to the results of our “particle-only”
model in Section 3.

ALMA Partnership et al. (2015) identified seven pairs of
distinct dark and bright rings in the ALMA image of the HL
Tau disk which they labeled D1...D7 and B1...B7 (more on this
in Section 4). They approximated the radial distance of the
center of each ring by making a cross-cut along the disk’s
major axis and found the dark rings to be at 13.2±0.2,
32.3±0.1, ∼42, ∼50, 64.2±0.1, 73.7±0.1, and ∼91.0 au,
placing the first four dark rings in a chain of MMRs,
specifically 1:4:6:8. Pinte et al. (2016) measured the missing
dust mass in each of the seven gaps by integrating the dust
surface density of each gap and comparing it to its surrounding
bright rings. They argued that these provide the mass of the
rocky core of the possibly embedded planet in each dark ring.

Other authors have also attempted to constrain the masses of
the planets that are believed to be shepherding the HL Tau
gaps. Based on the depth of the gap seen ∼30 au from a central
star, Kanagawa et al. (2015) estimated the mass of its
embedded planet. They did so by using the relationship
between the depth of a gap formed by a planet in its feeding
zone in a protoplanetary disk and the mass of the planet as
well as the disk’s viscosity and scale height (Duffell &
MacFadyen 2013; Fung et al. 2014; Kanagawa et al. 2015,
see), given by (Kanagawa et al. 2015):
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where Mp is the planet’s mass in stellar mass units M*, Σp/Σ0

is the gap depth which is the ratio of the surface density of the
planet-induced gap to that of the unperturbed disk, hp is the
disk’s aspect ratio at the planet’s orbital radius (h/r, with h
being the scale height), and αss is the Shakura–Sunyaev
kinematic viscosity parameter (Shakura & Sunyaev 1973).

Adopting a stellar mass of 1.0Me, a viscosity parameter of
10−3, and estimating the gap depth and the disk’s aspect ratio
to be ∼1/3 and ∼0.07 respectively, Kanagawa et al. (2015)

were able to determine that the mass of the planet at 30 au is at
least 0.3MJ.
Also, using the gap depth (Equation (1)) and a method based

on angular momentum transfer analysis in gas disks, Akiyama
et al. (2016) estimated the masses of the planets in the HL Tau
system to be comparable to or less than 1MJ.
Estimating the dust mass deficits in the gaps as done by Pinte

et al. (2016), Kanagawa et al. (2015), and Akiyama et al.
(2016) provides a lower limit for the planet masses since an
accurate measurement of the gap depth requires high signal-to-
noise ratio data, otherwise the gaps cannot be fully resolved
and seem to be partially “filled in” (Pinte et al. 2016). For this
reason, in a follow-up paper, instead of using the gap depth to
measure the masses of the planets, Kanagawa et al. (2016)
derived an empirical relationship between the width of a planet-
induced gap and planet mass, disk aspect ratio, and viscosity.
Using two-dimensional hydrodynamic simulations, and assum-
ing that the dust particles are strongly tied to the gas (i.e., dust
filtration is not a major concern), they determined this
relationship to be:
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with rp and Δgap being the orbital radius of the planet and the
width of the gap it creates in the disk, respectively, where the
gap edges are defined by regions where the surface density
drops to less than half the unperturbed surface density.
Using Equation (2) to determine planetary masses probably

results in more accurate estimates than simply using the size of
each planet’s Hill radius, which tends to predict rather large
planetary masses.3 For the planets in the HL Tau disk,
Akiyama et al. (2016) measured the gap widths to be 5.0, 4.1,
6.2, and 4.5 au, at rp=∼13.5, ∼32.4, ∼65.2, and ∼77.2 au
and used the size of each planet’s Hill sphere to calculate its
mass. This resulted in planetary masses of -

+88.8 5
5, -

+3.6 0.6
0.7,

-
+1.5 0.5

0.5, and -
+0.3 0.1

0.1 MJ, much larger than other mass estimates
for the HL Tau planets, especially the innermost planet whose
Hill radius suggests a stellar-mass body. Although the
possibility of low-mass stellar companions in this system is
not ruled out, high-sensitivity direct imaging in the mid-
infrared by Testi et al. (2015) did not reveal any point sources
in the HL Tau disk. Although their observations were more
focused around the gaps at ∼70 au (for which the contrast level
reached was ∼7.5 mag.), their search for point sources in the
HL Tau disk was not exclusive to the outer disk. Nevertheless,
to examine the possibility of stellar/substellar companions in
the HL Tau disk, further studies are needed to determine the
stability of the system under such conditions. Therefore, we
exclude mass measurements from planetary Hill radii when we
later compare our results to those of others (see Section 3.1).
It is worth noting here that dust filtration by the planet’s

pressure bump as well as dust migration under radiation and
drag forces can also cause gaps to be filled in temporarily and
yield inaccurate measurements of the gap width and depth.
Thus the mass of a gap-opening planet derived from the width

3 The Hill radius, rH, is defined as
*

( )( )
aM

M3

1 3
, with M and M* the masses

ofthe planet and the star, respectively, and a the semimajor axis of the planet’s
orbit (Murray & Dermott 1999). rH defines the region around a planet where its
gravity dominates over that of the star: systems of moons, for example, must

reside well within a planet’s Hill sphere to be stable.
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Table 1
Estimated Orbital Radii and Masses of Possible Planets Forming HL Tau’s Five Major Gaps from the Literature

rp (au) M ( )MJ Må (Me) Method References

-
+11.2 0.1

0.2
-
+29.7 2.9

2.9
-
+64.2 0.3

0.3
-
+0.40 0.00

0.02
-
+0.02 0.02

0.03
-
+0.21 0.01

0.02 0.55 Particle-only numerical sim.
(Wisdom–Holman)

This work

13.1 33.0 68.6 0.35 0.17 0.26 0.55 HD & radiative transfer Jin et al. (2016)
11.8 32.3 82 0.77 0.11 0.28 0.55 2D HD sim., Gap width mea-

surements (Equation (2))
Kanagawa

et al. (2016)

-
+13.5 0.4

0.4
-
+32.4 0.4

0.6
-
+65.2 0.9

1.3
-
+77.2 0.7

0.8 >0.85 >0.61 >0.62 >0.51 0.55 Gap depth measurements
(Equation (1))

Akiyama
et al. (2016)

-
+13.6 0.2

0.2
-
+33.3 0.2

0.2
-
+71.2 0.5

0.5
-
+93.0 0.9

0.9 0.30 No MMR
0.72 MMR

0.30 No MMR
0.72 MMR

0.55 N body sim., REBOUND
package (Rein & Liu 2012)

Tamayo
et al. (2015)

-
+13.6 0.2

0.2
-
+33.3 0.2

0.2
-
+65.1 0.6

0.6
-
+77.3 0.4

0.4
-
+93.0 0.9

0.9 0.11 No MMR
0.30 MMR

0.11 No MMR
0.30 MMR

0.11 No MMR
0.30 MMR

-
+11.3 0.1

0.2
-
+29.4 3.6

2.6
-
+63.7 0.4

0.5
-
+0.81 0.01

0.02
-
+0.04 0.04

0.04
-
+0.37 0.03

0.01 1.3 Particle-only numerical sim.
(Wisdom–Holman)

This work

13.2 32.3 68.8 0.2 0.27 0.55 1.3 3D dust+gas SPH Dipierro
et al. (2015)

11.8 32.3 82 1.4 0.2 0.5 1.0 2D HD sim., Gap width mea-
surements (Equation (2))

Kanagawa
et al. (2016)

-
+13.2 0.2

0.2
-
+32.3 0.1

0.1
-
+64.2 0.1

0.1
-
+73.7 0.1

0.1 91 > -
+0.02 0.01

0.01 > -
+0.07 0.01

0.01 > -
+0.03 0.01

0.00 > -
+0.08 0.05

0.03 > -
+0.11 0.06

0.03 1.7 Surface density measurements Pinte et al. (2016)

Note. If the two gaps at D5 and D6 are formed by a single planet at 71.2 au, Tamayo et al. (2015) estimated the masses of the two outermost planets to be 0.30 MJ if the two planets at D5+D6 and D7 are not in MMR
and 0.72 MJ if they are. In the four-planet scenario, Pinte et al. (2016) determined the mass of a single planet at 69.0 au forming the gap at D5+D6 to be at least -

+ M0.44 0.09
0.05

J, though they used a much larger stellar mass
to derive those planetary masses. Kanagawa et al. (2016) used two different stellar masses in their measurements of planet masses based on gap widths, both of which are listed here. Their mass measurement for the
planet orbiting around a 1 Me star at ∼30 au is consistent with their earlier paper (Kanagawa et al. 2015) where they had determined the mass from gap depth to be at least 0.3 MJ using the same stellar mass. The table
also lists the results of our work, determined for two stellar masses of 0.55 and 1.3 Me, explained in subsequent sections.
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and depth of the gap must be taken with caution, particularly in
cases where the disk is massive and hence there is high rate of
collisional fragmentation down to grain sizes that are affected
by radiation and drag forces. However, such effects are more
important when planetary masses are estimated from the depths
of the gaps than their widths (see Dong et al. 2015).

Using hydrodynamic simulations and radiative transfer
models, Jin et al. (2016) attempted to match the width and
depth of the three prominent gaps in the HL Tau disk, located at
at 13.1, 33.0, and 68.6 au and constrained the masses of the
planets that are believed to be in those gaps to be 0.35, 0.17, and
0.26MJ, respectively, assuming no planet migration through the
disk. The model assumes a disk mass of ∼7.35×10−2Me and
the same αss parameter as Kanagawa et al. (2015) while the dust-
to-gas ratio is taken to be 1%. Furthermore, the authors also tried
to match the eccentricities of the gaps where they placed the
three planets and found them to be 0.246, 0.274, and 0.277,
respectively. On the other hand, smoothed particle hydrody-
namic (SPH) models by Dipierro et al. (2015) constrained the
masses of the planets embedded in the HL Tau disk to be 0.2,
0.27, and 0.55MJ with planets at 13.2, 32.3, and 68.8 au.

Gas and dust interact differently with planets. Numerical
simulations by Jin et al. (2016) showed that the three gaps
formed by tidal interaction with the embedded planets in the HL
Tau disk are shallower in gas distribution and deeper in dust,
though both have similar morphologies (see their Figure 1). The
difference in the gap’s gas and dust surface density arises from
the fact that submillimeter dust is pushed toward the edges of the
gap as it starts to open since gas drag tends to accumulate dust
particles in high-pressure regions as suggested by the enhanced
dust emission near gap edges (see Haghighipour & Boss 2003;
Fouchet et al. 2007; Maddison et al. 2007).

Most authors place three planets in the HL Tau disk;
however, the possibility of additional planets in this disk has
also been discussed in the literature. For instance Tamayo et al.
(2015) considered the possibility of up to five planets in the HL
Tau disk at nominal radii of 13.6, 33.3, 65.1, 77.3, and 93.0 au.
This places the outer three planets nearly in a chain of 4:3
MMR. The authors determined the masses of the five planets
under two different scenarios: if the planets are not in MMR,
they found a maximum mass of ∼2 Neptune masses for the
outer three bodies; however, if the outer three planets are in
resonance, as suggested by the locations of the gaps, they can
grow to larger masses via resonant capture as they migrate
through the disk during which their masses can reach at least
that of Saturn. The masses of the two inner planets were not
well constrained in this study since these planets are
dynamically decoupled from the other three.

Planets forming in a multi-planet system can grow to where
the system becomes unstable simply because of the growth in
the sizes of the planets’ Hill spheres. Planets whose orbits
around the star are separated by less than several of their
mutual Hill spheres are unstable: this stability criterion is
defined by Gladman (1993) who suggested planets that are
separated by less than 3.46rH destabilize on a timescale that
is roughly their conjunction period. On the other hand,
Tamayo et al. (2015) showed through numerical simulations
that planets can still survive well beyond the above stability
criterion if they capture in MMR at low masses and grow
together. This is because resonance mitigates the effect of
close encounters. For the system to be Hill stable, the
maximum masses for the three outermost planets in the HL

Tau disk were found by Tamayo et al. (2015) using
Equation (3), taking the stellar mass to be M*=0.55Me:
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where Δa is the planet separation and Mcrit is the maximum
mass to ensure stability.
Therefore, according to numerical simulations of the HL Tau

disk by Tamayo et al. (2015), if the outer three planets are not
in MMR they become unstable at conjunction timescale once
they exceed the mass threshold beyond which their separation
becomes less than ∼3.5rH. However, if they are captured at
resonances while they migrate through the disk, they can grow
well past the above limit until they become so massive (∼40%
beyond mass of Saturn or 0.44 MJ) that their mutual
gravitational perturbation at conjunctions brings them out of
resonance at which point swift instability ensues (Tamayo
et al. 2015).
Moreover, their numerical simulation suggested that the

system would be substantially more stable if not all the gaps
were made by planets, particularly the more closely spaced
gaps at 64.2 and 73.7 au, or D5 and D6 according to ALMA
Partnership et al. (2015). (Note that these two gaps are at 65.1
and 77.3 au in Tamayo et al. 2015). They suggested that these
two gaps might not be made by two different planets; there
might instead be a single planet at 71.2 au that has shaped a
horseshoe-like gap in the disk of HL Tau. If four planets are
considered instead of five in the HL Tau system, their
numerical simulations put a final mass limit of at least
230M⊕ for the outer two planets if they are in MMR while
they can reach ∼1 Saturn mass if they are not.
Other authors have also suggested that the double gap at D5

and D6 in the HL Tau disk could be made by a single planet
exciting Lindblad torques with the bump in the middle being
co-orbital horseshoe material where the planet is possibly
hiding. Using 2D gas+dust hydrodynamic simulations com-
bined with radiative transfer modeling, Dong et al. (2017)
showed how super-Earths placed in a low-viscosity disk can
produce characteristic double gaps in mm-dust distribution and
argued that the D5+D6 gaps in the HL Tau disk could be
carved by a single planet. Besides the double gap on either side
of the planet’s orbit, their simulations also suggested that
additional gaps could arise in the disk for a single planet,
depending on disk and planet parameters. In a more recent
paper by Bae et al. (2017), using 2D hydrodynamic simulations
of the gas component of the HL Tau disk, the authors were able
to reproduce not only D5 and D6 with a single planet at
68.8 au, but also noticed that the same planet can reproduce the
D1 and D2 gaps at 13.2 and 32.3 au, though their model did not
reproduce the finer structures such as D3, D4, and D7. They
also argued that the mass of the planet can be constrained from
the positions of multiple gaps, provided that the disk
temperature profile can be accurately measured.
Table 1 summarizes the masses and locations of the possible

planets in the HL Tau system obtained by the studies
mentioned above. It is important to note that the masses
derived for the HL Tau planets in the literature depend on the
mass of the central star, which is not well constrained.
Estimates of HL Tau’s stellar mass range from 0.55 Me (e.g.,
Tamayo et al. 2015) to 1.7Me (e.g., Pinte et al. 2016).
Therefore, in order to be able to compare our results to those of
others, we only focus on two previously used values of 1.3 and
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0.55Me. Nevertheless, even for the same stellar mass, Table 1
shows that, despite many attempts to constrain planetary
parameters in the HL Tau disk, much work is still needed to
determine the number and parameters of its potentially
embedded planets. This is the primary motivation of this
work: can we reproduce the key features of the HL Tau disk
using the computationally inexpensive model of a particle-only
disk to address whether some parameters of its planets,
specifically their mass and orbital radii, can be determined
without the need for sophisticated models which are, never-
theless, required to fully describe gas-rich disks? In Table 1, we
also list our results for comparison with others but will explain
how we arrived at these values in the next two sections.

2. Method

2.1. The HL Tau Disk Profile

The observed profile of the HL Tau disk used here is
extracted by the following method. First, we obtained the FITS
image of the HL Tau disk available publicly at the ALMA
website and observed in dust continuum emission in band 7
(the highest resolution). We made a cross-cut across the disk’s
major axis to extract HL Tau’s radial brightness profile in
Jy/beam per radial distance from the star. The extracted profile
is 186 pixels long over a physical distance of 115 au. However,
the resolution of the image is only 35 mas or ∼5 au at 130 pc
(see NRAO 2014) and so we assess that we really only have
115/5≈23 bins for the purposes of determining our degrees
of freedom (see Section 2.4) and 186/23≈8 pixels per bin.

2.2. Simulations

Our simulations are performed with a symplectic integrator
based on the Wisdom–Holman algorithm (Wisdom & Holman
1991). A fixed timestep of 150 days is used for all simulations.
Only point particles are simulated, without any gas drag,
radiation pressure, or Poynting–Robertson drag. These effects
are likely to be important in sculpting the HL Tau disk but our
purpose here is to determine what, if any, of the planetary
parameters can be recovered by the simplest possible model.

Simulations are run for 10,000 yr (∼1000 inner orbits) and
recorded at 100 yr intervals. Three planets and 1000 particles
are placed within the disk on circular orbits around a 1.3 or
0.55 solar-mass central star. Particles are removed if they reach
a distance less than ∼500 solar radii or greater than 220 au. The
planets are placed nominally at 11.7, 29.1, and 64.5 au based
on the locations of the gaps in the HL Tau disk, but the planets’
locations will be varied as part of the fitting process, described
in Section 2.3.

Simulated disk profiles are created from the last five
snapshots of the disk. The use of several snapshots increases
our signal-to-noise without the computational expense asso-
ciated with simulating additional particles, though it assumes
that the disk is in a quasi-steady state. Examination of the disk
during the final stages confirms that indeed the disk structures
are well-established.

For plotting purposes, the simulation data are extracted into a
histogram with 186 bins to match the observations. The bins
are weighted by the blackbody emission of their particles
assuming a dust albedo of 0.5 and emissivity of 1.0 at mm
wavelengths to calculate the equilibrium temperature of the
disk particles. The stellar luminosity and effective temperature
are also uncertain but are taken to be 8.3 Le and 4000 K,

respectively (Ruge et al. 2016). For calculation of the χ2 of our
fits, the data are box-car smoothed down to the effective
resolution of the observations (8.3 bin box-car). On the basis of
the χ2 value, new parameter values are chosen and a new
simulation is initialized. The whole process is iterated until
convergence is achieved.

2.3. Fitting

Best-fit parameters are established on the basis of the χ2

between the observational profile and a simulated profile
normalized to the first bin in the observed profile. This
normalization reduces our degrees of freedom by one.
Minimization of the χ2 parameter is accomplished using
Interactive Data Language (IDL) and the Amoeba package,
which is a multi-dimensional derivative-free optimization
algorithm based on the downhill simplex method of Nelder
and Mead (1964). Typical Amoeba runs require 900–1000
simulations and a total of 10 hr to complete on a single CPU.
Amoeba requires the tolerance to be at least equal to the
machine’s double precision, so we set the tolerance to 10−12.
This is the decrease in the fractional value of the χ2 in the
terminating step.
Chi-squared minimization using the Amoeba algorithm does

not require calculating derivatives. Furthermore, each iteration
only takes one or two function evaluations and therefore
Amoeba converges faster than some other minimization
routines such as nonlinear least-squares fitting using the
Levenberg–Marquardt algorithm (Marquardt 1944; Levenberg
1944) which takes several calculations per iteration. Amoeba is
also more robust for problems with stochastic components such
as what we are dealing with here (e.g., the particle positions are
chosen randomly for each simulation, which introduces some
statistical noise to the radial profiles), and we chose the
Amoeba algorithm for these reasons.
A downside to using Amoeba is that it can get to a point

where the changes in the parameter values become insignificant
before a minimum is reached. Thus it is generally recom-
mended to restart Amoeba from the point where it claims to
have found a minimum (see Press et al. 1992) and this is what
we do 10 times until the routine converges again. Our
procedure was to first perform initial minimization runs using
parameter values chosen arbitrarily, except for the orbital radii
of the three planets (these were estimated from the locations of
the major gaps in the HL Tau disk) and each parameter was
allowed to vary by ±50% by the minimization routine. From
the lowest χ2 obtained from these initial runs (our “initial
solution”), in order to ensure as much as possible that the
minimum χ2 achieved is the global minimum, we performed 10
additional minimization runs where we changed the initial
conditions such that each parameter fell randomly within 10%
of that obtained from the initial solution. At the end, we
recorded the parameters that produced the lowest χ2 from the
10+1 Amoeba runs. Our restarting process helps avoid
terminating at a spurious local minimum, but we cannot
exclude the possibility of a true global minimum that might
exist far away from our final result in parameter space.
For our simulations here, we fit 10 parameters of the planets

and disk (in our model with the broken power-law but seven
when we use a single power-law for disk density distribution,
see Section 3). We assume that there are three planets on
circular orbits. In addition to the masses and orbital radii of
these three planets, we also fit a power law to the disk surface
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density. The surface density of circumstellar disks is generally
taken to have a profile of the form Σ∝R−α with the power-
law index, α, between 0 and 1 depending on the mass of the
protoplanetary disk (Andrews & Williams 2007). (Note that the
power-law index derived from Minimum Mass Solar Nebula is
1.5; Weidenschilling 1977). However, the use of a single
power law does not well reproduce the radial profile of HL
Tau’s flux density. A much lower χ2 value is obtained by
selecting a different power-law index beyond the location of
the outermost planet (see Section 3). Yen et al. (2016) also used
a broken power law in their measurements of gap widths and
depths in the HL Tau disk where the slopes of the dust
distribution based on the column density of HCO+, assuming
that gas and dust are well coupled thermally, were found to be
0.5±0.2 at ∼20 au and 0.9±0.3 at ∼60 au, suggesting a
steep decline in dust continuum emission beyond where the
outer major gap lies. Jin et al. (2016) proposed that the deficit
in dust in the outer part of the HL Tau disk is due to the inward
drift of dust caused by gas drag and the absence of a source
to supply the dust at large radii (also see Birnstiel &
Andrews 2014). In fact, disks are found to have exponentially
tapered edges and an exponential decrease in dust surface
density has also been observed for a number of other
circumstellar disks (see for instance, McCaughrean &
O’dell 1996) with power-law indices beyond the above-
mentioned range, suggesting that the pure power-law relation
(i.e., Σ∝r−α) does not accurately represent a disk’s intensity
profile and must be replaced by an exponentially truncated
density distribution with Σ∝r− γ, where γ is the exponent in
the viscosity dependence on distance from the star (e.g.,
Hartmann et al. 1998). For simplicity (that is, to avoid adding
additional parameters to our fit), we assume a standard power-
law slope without an exponential term. Therefore, we argue
that our fit to the radial profile of the outer disk would be
improved if we adopted the above surface density profile and
incorporated dust re-generation and gas drag in our model,
which we leave to future work.

2.4. Uncertainties

Uncertainties in the fitted parameters are estimated based on
the χ2 values. The number of degrees of freedom, ν, will be the
effective number of bins (23, see Section 2.1) minus one for the
normalization discussed in Section 2.3, and minus one for each
free parameter. We have 10 free parameters, giving us a total of
12 degrees of freedom.

The uncertainties to be at the locations in phase-space can be
approximated as where the χ2 value is increased over its
minimum value by an amount Δχ2 dependent on ν and the
stringency of the uncertainty bounds desired. Here we choose a
p=0.95 (nominally 2σ) confidence region, which means that
our uncertainties correspond to the locations for which (Press
et al. 1992)

n cD
= -

⎛
⎝⎜

⎞
⎠⎟ ( )Q p

2
,

2
1 , 4

2

where Q is the incomplete gamma function, and Δχ2 gives the
increase in χ2 corresponding to our uncertainty.
Note that we compute our uncertainties from χ2 values with

all the parameter values except the one in question held
constant. This implicitly assumes that the parameters are
uncorrelated, which we assume here for reasons of simplicity
and practicality. Our χ2 is derived by a process with inherent
stochasticity (i.e., the initial conditions of particles within the
disk have a random component), thus we have too many free
parameters and too noisy a system to determine the covariance
between them all effectively. This will be more apparent when
the uncertainty results are discussed in Section 3.

3. Results

As mentioned in Section 2.3, a single power-law index for
the surface density cannot reproduce the observed density
profile of the HL Tau disk due to a steep fall-off in the outer
part of the disk beyond the location of the outermost planet.
This is shown in Figure 1. Therefore, we break the disk into
two segments, each having a different power-law index, α1 and
α2, which we leave as free parameters in our simulations. We
also allow the location of the boundary between the two
segments to vary, and introduce an additional parameter to
allow for a change in the surface density of the disk at the
boundary between the two segments.
To obtain the best-fit values, we thus need to include 10 free

parameters in our simulations: one for each planet’s mass (M)
and orbital radius (rp), two for the differential surface density
power-law indices (α1 and α2), one for the transition point that
separates the two parts of the disk with different slopes (rb),
and finally one for the fractional increase in surface density at
the transition point ( f ). Note that we keep ri and ro fixed at 5.0
and 120.0 au which roughly mark the inner and outer edges of
the HL Tau disk. The use of the broken power law for the

Figure 1. Comparison between the radial profile of the HL Tau disk extracted from the FITS image observed by ALMA at band 7 (red) and our simulation drawn from
our final best-fit values for a disk with a single power law (black). We place three planets at nominal radii of 11.03, 28.91, and 64.52 au around a 1.3 Me star and allow
Amoeba to determine the best-fit parameters (i.e., the three planet masses, M (MJ), and orbital radii, rp(au), as well as the power-law index, α) by minimizing the χ2 .
For simplicity, we assume that the three planets are in circular orbits but acknowledge that the gaps in the HL Tau disk are found to have some eccentricity (see
Section 1.1). Here we use a single power-law surface density index for the disk that extends from ri=5.0 au to ro=120.0 au. However, the model with a single
power-law index fails to reproduce the disk profile well beyond the location of the outermost planet.
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disk’s surface density as well as introducing an increase in the
surface density at the boundary between the two segments
result in a lower χ2 value, which is shown in Figure 2.

Figures 1 and 2 show our lowest χ2 results for simulations of
disk and planets around a 1.3Me star with a single and a
broken power law respectively. The lowest χ2 simulation for
the case of M*=0.55Me (broken power law only) is shown
in Figure 3.

The 2σ uncertainties for each parameter are found using the
procedure outlined in Section 2.4. Figure 4 shows uncertainty
calculations for the three planet masses. In each case, we fit a
polynomial spline curve of the lowest possible degree to the
bowl-shaped part of the χ2 surface and mark the two points
where it crosses the 2σcut-off. The difference between either

of those points and the lowest χ2 value determines the positive
and negative uncertainties.
The best-fit parameters obtained and their uncertainties are

shown in Table 1 for the masses and orbital radii of the three
planets that we placed in the major gaps of the HL Tau disk for
the two different stellar masses used in our simulations.
Though some authors have placed two planets in the last two
major gaps of the HL Tau disk (at ∼59 and 70 au), we are able
to reproduce both gaps with a single planet at ∼64 au. In
agreement with Dong et al. (2017) and Bae et al. (2017), we
attribute the increase in dust emission at the location of the
outermost planet to particles that are trapped in 1:1 MMR with
the planet. In the next section, we discuss how the parameters
we obtained using our particle-only model compare with those

Figure 2. Same as Figure 1 except that we use two different power-law indices for dust surface density distribution to account for the exponentially decaying surface
density profile of the HL Tau disk and the steeper slope beyond the orbit of the planet that we place inside the third major gap. The χ2 value in this case is significantly
improved. The nominal locations of the three planets are shown by the solid blue lines. We also identify two gaps that fall at MMRs with the planets at rp2 and rp3 and
mark their locations with dotted blue lines (see Section 3.2 for a discussion on possible MMR gaps in the HL Tau disk).

Figure 3. Same as Figure 2 except that M is changed from 1.3 to 0.55 Me.

Figure 4. Uncertainty calculations at 2σ confidence level for the masses of the three planets in the HL Tau disk shown by Figure 3: M1 (left), M2 (middle), M3 (right).
In fitting our spline curve, we exclude the points that fall outside the bowl-shaped part of the χ2 surface around the minimum (the blue diamond) as well as those that
are outside the 2σlevel by more than 10%. The excluded points are shown by the red symbols in the top panels. We then fit a spline curve of the lowest possible
degree (the blue curve) and note the points where it crosses the 2σcut-off (the dashed green line). The difference between the minimum χ2 and either of those points is
taken as the uncertainties for the parameter value.
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of others that are summarized in Table 1, and whether our
method can be used as a first step in modeling complex gas
disks such as HL Tau’s.

3.1. Comparison to Other Studies

A comparison between planetary parameters (masses and
orbital radii) that we obtained for theM*=0.55Me case using
our simple model of the HL Tau disk shows that, except for the
mass of the middle planet which is underestimated by our
model, these parameters are comparable to what some authors
found using models of higher complexity. In particular, our
mass measurements for planets 1 and 3 are similar to those
found by Jin et al. (2016) who used hydrodynamic gas+dust
simulations coupled with 3D radiative transfer calculations.
Planet 3ʼs mass is also comparable to what is suggested by
Kanagawa et al. (2016) through their hydrodynamic simula-
tions. However, those authors note that if the gap they
measured was narrower by ∼2 au, the mass of the innermost
planet would be the same as what Jin et al. (2016) found (which
is similar to our result).

Planetary masses derived using Equation (2) depend on rp
since gap widths are scaled by the location of their centers.
Kanagawa et al. (2016) identified the three prominent gaps in
the HL Tau disk from the radial profile of the optical depth in
band 6 which is offset from the radial profile of the dust
brightness temperatures in continuum emission at the locations
of the first (D1) and third (D5+D6) planets (see their Figures 1
(a) and (b)). Compared to their plot of the temperature profile
of dust, D1 is shifted inward while D5+D6 is shifted outward
in optical depth. This means that if rp was determined from dust
temperature, the mass of the planet in D1 would be less than
what they report while that of the planet in D5+D6 would be
larger. Also they found rp by taking (rin+ rout)/2 where (rin
and rout) are the inner and outer edges of each gap. This
assumes that the gaps are symmetric, but in fact they are
slightly asymmetric. This could affect rp and therefore their
calculation of planetary mass from the gap width. Furthermore,
Kanagawa et al. (2016) also noted that their mass estimates
depend strongly on the disk scale height (and hence
temperature) as well as dust opacity spectral index, both of
which need to be well constrained for the planet mass to be
determined accurately. Determining the viscosity parameter is
also important when using the formula given by Kanagawa
et al. (2016) to measure planetary masses, although the
dependence is not as strong since aµMp ss

1 2.
Compared to our results for the planet masses, the masses

derived by Akiyama et al. (2016) are overestimated. This could
be due to the fact that they used gap depths (i.e., Equation (1))
to find planet masses and, as discussed in Section 1.1, high
signal-to-noise ratio data are required to measure the emission
at the bottom of the gap and determine Σp/Σ0 (see Kanagawa
et al. 2016). Note that both Equations (1) and (2) apply to gap
depth and width in gas emission but assume that they are
similar for dust gaps, which is true if gas and dust are well
mixed and dust filtration is not strong. However, studies
show that even if dust filtration is weak (which is the case
for relatively massive disks such as the HL Tau:
Mdisk= 0.07–0.17Me; see Dong et al. 2015; Jin et al. 2016),
gas gaps are shallower than dust gaps though the widths remain
comparable in gas versus dust. This is because filtration affects
gap depths more than their widths (see Dong et al. 2015; Yen
et al. 2016). Thus planetary masses are more accurately

measured using gap widths (i.e., Equation (2)) than gap depths
(i.e., Equation (1)). According to Equation (1), shallower gaps
result in overestimating planetary mass, which is likely why
planetary masses found by Akiyama et al. (2016) are larger
than those found by ourselves and Jin et al. (2016).
Tamayo et al. (2015) did not constrain the masses of the two

planets in D1 and D2 since they are dynamically decoupled
from the other planets they placed in their simulations. They
did, however, determine the limit for the mass of the planet in
D5+D6 by letting it grow together with a fourth planet which
they placed in D7 (∼90 au) under two scenarios:Mp0.30MJ

if the two planets are not in MMR and Mp0.72MJ if they
are. We did not put any planet in D7 and leave the investigation
of the possibility of additional planets in the HL Tau disk to a
future paper, so we shall not comment on how our results
compare to theirs other than naively mentioning that in both
their four- and five-planet simulations, the masses derived are
sub-Jovian (except perhaps where they suggest a lower limit of
0.72MJ for the outer two planets in MMR in the four-planet
case), which is consistent with the other studies mentioned
here, ours included. However, we acknowledge that placing
additional planets in the system may in fact affect our results,
which we defer to future work.
The mass of the central star in the HL Tau system is not well

known. Estimates based on the Keplerian velocity of gas (e.g.,
Sargent & Beckwith 1991; Pinte et al. 2016) or protostellar
evolutionary tracks (e.g., Beckwith et al. 1990; Güdel
et al. 2008) suggest a star of mass 0.55–1.7Me. Therefore,
we tried our simulations with a higher stellar mass to see how
well our results match those of Dipierro et al. (2015) for a
stellar mass of 1.3Me. Again, the mass of our second planet is
significantly lower than theirs while they found the mass of the
first planet to be much less than what we did, though the mass
of our third planet is comparable to theirs. Since planet masses
scale with the stellar mass, which is also true in our simulations
when our results for the two different stellar masses are
compared against each other, it is not clear why Dipierro et al.
(2015) found the mass of the first planet to be half that of, for
instance, Jin et al. (2016) even though the stellar mass is more
than doubled.
Our best-fit parameters for the power-law indices of the

disk’s surface density profile are a = -
+0.261 0.02

0.02 and a =2

-
+4.96 0.05

0.07 where the break occurs at = -
+r 69.70b 0.12

0.33. We note
that these two values are very different from each other and
from what Yen et al. (2016) report (see Section 2.3), partly
owing to the fact that we introduced a sudden increase in the
disk’s surface density by almost a factor of 3 (i.e., f= 2.69)
where we broke the intensity profile of the disk into the two
segments. Furthermore, the Yen et al. (2016) values are derived
from the the column density of HCO+ gas (though they
assumed that dust is tightly coupled to the gas) whereas our
model only includes solid dust particles. Nevertheless, our
surface density slope in the outer disk is close to the value
obtained by Pinte et al. (2016) derived from the missing dust
mass in each gap. According to their model, the surface density
profile of the HL Tau disk has a slope of −3.5 out to about
75 au but falls off faster in the outer part of the disk. They find
the power-law slope in the outer disk to be −4.5, which is
similar to what we obtained from our model. They attributed
the change in the surface density of dust to two possible
reasons: lack of efficient grain growth in the outer disk or the
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removal of a significant fraction of mm-sized grains from the
outer disk via radial migration of dust.

Using a larger stellar mass in our simulations (i.e., 1.3
instead of 0.55Me), we find a similar value for α2 (= -

+4.68 0.05
0.06)

but α1 is reduced by a factor of 2 (a = -
+0.181 0.01

0.01). In this case,
when using a single power law for the disk’s surface density,
we find α to be ∼0.20. We therefore conclude that we would
need a more complicated model for the disk surface density to
better estimate the power-law indices in the two segments.

Nevertheless, our results explain the three prominent gaps at
D1 and D2, and the double gap at D5+D6 and the planetary
masses found are similar to the results of others, especially
when the stellar mass is 0.55Me, while also reproducing some
finer gaps, particularly at D3 and D7. In the next section we
explain the possible nature of the two narrower gaps seen both
in the ALMA image of the HL Tau disk and in our simulations.
Therefore, our model is successful in reproducing the observed
intensity profile of the HL Tau disk without the need to include
certain elements that are necessary to fully study a gas disk.

3.2. MMR Gaps in the HL Tau Disk

The orbital radii of the planets found by our fitting procedure
represent the locations of the three major gaps in the HL Tau
image to within uncertainties (where the two gaps made by the
outermost planet are considered to be a double gap separated
by particles in 1:1 MMR with a planet at ∼64 au). A closer
look at the observed intensity profile of the HL Tau disk reveals
a few other narrower gaps which have motivated some authors
to include more planets in their modeling of the HL Tau disk.
However, our earlier studies, Tabeshian & Wiegert
(2016, 2017), have shown that not all disk gaps need to
contain planetary bodies and that some gaps can, in fact, be
made via MMR with a planet that is located outside the gaps
and can be used to learn about the hidden planets. We note that
our model of the HL Tau disk, which only includes three
planets, is able to reproduce some of those narrower gaps as
well. In fact, given the locations of the second and the third
planets, we argue that the gaps seen at ∼38 and ∼84 au,
roughly corresponding to the locations of the D3 and D7 dark
gaps in ALMA Partnership et al. (2015), are made by exterior
3:2 MMR with those two planets, respectively. These are
shown by the vertical dotted lines in Figures 2 and 3.
Furthermore, the locations of the first and second planets place
them in a 4:1 MMR with each other.

HL Tau is considered a relatively massive disk in which
rapid pericenter precession rates alter the location of resonances
by an amount roughly given by the ratio of the disk mass to star
mass (Tamayo et al. 2015). Taking Mdisk to be=0.13Me
(Kwon et al. 2011), this means that the disk is 25% the mass of
the star which, according to Equation(10) of Tamayo et al.
(2015), causes the location of the 3:2 resonance to move by
<10%. However, they point out that, due to the uncertainty in
calculating the precession rate, the exact locations of
resonances in massive disks are uncertain to within
∼Mdisk/Må as well.

In order to visually compare the result of our simulation with
ALMA’s image of the HL Tau disk, we make a simulated
image using the Common Astronomy Software Applications
(CASA) for simulating ALMA observations (McMullin
et al. 2007) based on the disk produced with our best-fit
parameters. To make the CASA simulated image, we assume
that our disk is placed at the HL Tau distance of 130 pc and

therefore has the same radial size on the sky. We also assume
that the particles are perfect blackbodies at local thermal
equilibrium and take the disk’s total flux to be 700 mJy at
1.3 mm (Kwon et al. 2011). Stellar radius and effective
temperature are 6.0Re and 4000K, respectively (Ruge
et al. 2016). We set the image resolution at 35 mas or ∼5 au
to match that of ALMA’s observation of the HL Tau disk and
use all the 50 available antennas in the 12 m array. We assume
that the disk is observed for a total of 4 hr and set the
integration time to 10 s per pointing. The R.A. and decl. of the
center of the image are α=04h31m38 45 and δ=18°13′
59 0, J2000 (Tamayo et al. 2015). Beam deconvolution is done
using CASA’s CLEAN algorithm. The result is shown in
Figure 5. We adopt the same nomenclature used by ALMA
Partnership et al. (2015) for the dark gaps that we see in our
simulations, except that we take the two gaps around the
outermost planet to be the same with the planet in the middle.
It must be noted that we are not claiming that the properties

of gas-rich disks can be fully determined from simple models
that do not incorporate gas and radiation forces. However,
based on the ability of our simulations to reproduce the
intensity profile of the HL Tau disk, we argue that reasonable
matches with observations can be achieved with relatively
simple particle-only models of this intrinsically much more
complicated gas disk. Therefore, at least as far as understanding
the dynamics of the system is involved, we make the case that
simple models could be used to extract useful information
about the number and properties of possible planets embedded
in gas-rich disks which could be used in future, more thorough
analyses of these disks.

4. Summary and Conclusions

Advancements in observing capabilities in recent years have
revolutionized our understanding of planet formation and
evolution. Interferometric data made available in the mm and
sub-mm regime, particularly by ALMA, have provided
remarkably detailed images of circumstellar disks with
unprecedented angular resolution of a few milliarcseconds. In
protoplanetary disks, the structures observed are mostly
believed to be due to tidal interactions with unseen planets
that clear gaps as they accumulate and then sweep their orbits
clear of gas and dust. Therefore, studying such structures
would provide insight into the processes involved in the
formation and evolution of planets and planetary systems and
would help determine some planetary parameters without the
need to resolve the planets themselves.
We provided a dynamical model of the HL Tau disk, the

most detailed protoplanetary disk structure observed by
ALMA to date, without much of the complex physics
typically required in modeling gas-rich disks. In particular,
we hypothesized that the gas does not dominate the dynamics,
and set out to explore whether the radial profile of the HL Tau
disk could be recovered using a particle-only model. We were,
indeed, able to reproduce the disk’s intensity profile and
determine the masses of the planets that could likely be sculpting
the most prominent gaps in the HL Tau disk. With the exception
of the middle planet’s mass, which is underestimated by our
model compared to others, the values we obtained for the masses
and radial distances of the three potentially hidden planets in the
HL Tau disk orbiting a central star of mass 0.55Me are within
the range of parameters quoted in the literature. The planet
masses derived from the studies mentioned here are either from
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more complicated hydrodynamic and SPH simulations or studies
that require accurate measurements of disk properties such as
scale height (i.e., temperature), viscosity, dust opacity index, and
gas-to-dust ratio that are otherwise poorly constrained. Our model
is independent of those parameters, which makes it advantageous
in arriving rapidly at first estimates for planetary masses without
the need to determine the above parameters accurately. However,
our results should be taken as first approximations for the masses
of the planets; full hydrodynamic models are necessary to study
gas-rich disks, such as HL Tau, in more detail. Furthermore, we
recovered the tapered-edge of the disk, in which the surface
density of the disk changes exponentially beyond the orbit of the
outermost planet, as also noted by others, and determined the
surface density slope of the disk in the two regions using data
from ALMA’s observation at band 7. Another achievement of
our model was reproducing a few narrow gaps away from the
orbit of the three planets. Whereas the number of planets in the
HL Tau disk has remained a matter of debate, our results indicate
that at least five gaps can form in the HL Tau disk by including
only three planets: the additional gaps are attributed to MMRs
with the embedded planets.

Our intention here is not to undermine the importance of
hydrodynamic and SPH analyses of gas-rich disks. Though
computationally more intensive, such studies are undoubtedly
essential in gaining a better understanding of the underlying
physics at work in gas disks as sites of planet formation and
evolution. However, simpler particle-only models can be used
to glean some important information with regard to the
dynamics of planet–disk interactions. Such models provide
initial conditions to hydrodynamics codes as a first step toward
in-depth studies of disk structures, particularly those that are
believed to have been formed by unseen planets.
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