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ABSTRACT

The size distribution of the asteroid belt is examined with 16956 main belt asteroids detected in data taken from the
Canada–France–Hawaii Telescope Legacy Survey in two filters (g′ and r ′). The cumulative H (absolute magnitude)
distribution is examined in both filters, and both match well to simple power laws down to H = 17, with slopes
in rough agreement with those reported the literature. This implies that disruptive collisions between asteroids
are gravitationally dominated down to at least this size, and probably sub-kilometer scales. The slopes of these
distributions appear shallower in the outer belt than the inner belt, and the g′ distributions appear slightly steeper
than the r ′. The slope shallowing in the outer belt may reflect a real compositional difference: the inner asteroid belt
has been suggested to consist mostly of stony and/or metallic S-type asteroids, whereas carbonaceous C-types are
thought to be more prevalent further from the Sun. No waves are seen in the size distribution above H = 15. Since
waves are expected to be produced at the transition from gravitationally-dominated to internal strength-dominated
collisions, their absence here may imply that the transition occurs at sub-kilometer scales, much smaller than the
H = 17 (diameter ∼ 1.6 km) cutoff of this study.
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1. INTRODUCTION

The size distribution of the asteroid belt has been an astro-
nomical question since the discovery of 2 Vesta in 1802. The
last two hundred years of asteroid hunting have seen the distri-
bution strongly pinned down by observational studies, at least
for large objects (see Section 1.1). While the details vary, ob-
servations all reveal one characteristic: the number of main belt
asteroids (MBAs) rises sharply with decreasing diameter, with
the size distribution roughly following a power law. On the the-
oretical side, it was first shown by Dohnanyi in 1969 that in
an ideal steady-state condition, the size distribution should take
the form of a power law; in terms of absolute magnitude, H, the
cumulative size distribution can be expressed as:

log N (<H ) = C + γH (1)

where N is the number of objects brighter than H, γ is the slope
of the size distribution, and C is its intercept. In the ideal case,
γ = 0.5, (Dohnanyi 1969) but both this predicted slope and
the power law itself are based on gross idealizations. For one,
the absolute-magnitude distribution only maps simply to actual
size if one accepts the (false) assumption that all asteroids are
perfect spheres with identical albedo, and size is what drives
the collisional physics. Indeed, Dohnanyi (1969) expresses
the size distribution in terms of mass, which introduces the
complication of varying asteroid density as well. Aside from
identical, spherical bodies, this power law holds for objects that
respond to collisions in a size-independent way (i.e., have the
same strength-to-mass ratio at all sizes), which is also untrue of
real asteroids. Gravitationally-bound bodies’ strength-to-mass
ratio increases with size; objects bound by their internal strength
have the opposite relation (O’Brien & Greenberg 2003). Nor is
the asteroid belt in a steady state: bodies are ground down to
ever-smaller sizes and not replaced, and material also leaves
the belt through orbital resonances. Instead of an unvarying
power law, the main belt is expected to show a depletion of

bodies at smaller sizes, which are more fragile per unit mass
due to lower gravitational binding energy, and are more quickly
removed by Yarkovsky forces. As a result of these removal
processes, the ideally featureless power-law slope is expected
be superimposed by “waves” of abundance and depletion (Davis
et al. 1994; Durda et al. 1998; O’Brien & Greenberg 2003).

In this paper the size distribution of the main belt at sizes
down to H ≈ 17 is measured in two filters, in order to extend our
knowledge into the regime D ∼ 1 km in which internal strength
plays an increasingly important role in the bodies’ responses
to collisions (Farinella et al. 1982; Housen & Holsapple 1990;
Benz & Asphaug 1999), and in which compositional differences
(possibly indicated by color differences) become increasingly
important to asteroid cohesiveness and strength.

1.1. Previous Work

According to Gladman et al. (2009), the belt is almost entirely
known below absolute magnitude H = 15, and the slope of
its cumulative size distribution is γ = 0.5; there seems a
universal agreement that the slope below this point is somewhat
lower, but no agreement as to its actual value. The Spacewatch
survey (1992–1995), whilst looking for near-Earth objects,
found 59,226 MBAs down to a limiting magnitude of H = 21
and found γ = 0.36 below H = 15 (Jedicke & Metcalfe 1998).
The Sloan Digital Sky Survey, which operated from 1998–2000,
mapped the majority of the sky down to magnitude 21.5 in the
R band. In the process, they detected ≈13,000 asteroids, and
reported γ = 0.26 below H = 15 (Ivezic et al. 2001). The
Sub-km Main Belt Asteroid Survey (SMBAS) conducted with
the Subaru telescope in 2001 found 1111 asteroids down to a
limiting magnitude of 24.4, and reported the size distribution as
having γ = 0.24 for H � 18 (Yoshida et al. 2003). A second
run with a different observation sequence, dubbed SMBAS-II,
found 1734 asteroids and reported a size distribution of γ =
0.26 for H = 19.4–18 (Yoshida & Nakamura 2007)—it failed
to reproduce the differences reported in size distributions in the
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inner/middle/outer belts, however. A precursor to this study,
Wiegert et al. (2007), also found differing power-law slopes
across the belt, along with a marked tendency toward steeper
slopes in the r ′ than g′ filters. Section 4.3 is dedicated to
comparison with these results. Most recently, the Subkilometer
Asteroid Diameter Survey found 1087 asteroids with a size
distribution of γ = 0.3 for H � 15 down to H ≈ 18 (Gladman
et al. 2009). None of the more recent surveys discuss waves
in the size distribution, either due to lack of completeness in
the H � 15 region or simply because their authors were too
preoccupied with determining the slope. Davis et al. (2002)
reports a “well known bump” at ≈50–200 km (H ∼ 9.8–6.8)
and the possibility of another from ≈3–30 km (H ∼ 16–10.8).

2. METHODS

The observations for this work were taken at the
Canada–France–Hawaii Telescope (CFHT), a 3.6 m
optical/infrared telescope located atop the summit of Mauna
Kea in Hawaii. The Canada–France–Hawaii Telescope Legacy
Survey (CFHTLS) ran from mid-2003 to early 2009 using
more than 2300 hr over 5 yr. The observations supporting this
study were taken as part of the “Very Wide” (VW) segment of
the CFHTLS, using the 340 megapixel MegaCam instrument,
an optical/infrared imager, covering a 1◦ × 1◦ FOV (field of
view) to a resolution of 0.′′187 pixel−1. The VW segment of
the CFHTLS covered much of the ecliptic plane (a total area
of 410 deg2) inside a band of ±2 deg. The VW survey was
done using MegaPrime g′(400–580 nm), r ′(550–700 nm) and
i ′(670–870 nm) filters. In this study, we neglect the i ′ compo-
nent as these images were taken far from opposition, unlike the
other two filters. Aside from lowered detection efficiency at a
given diameter (due to phase effects) it also proved much more
difficult to make accurate orbital estimations for objects imaged
in i ′. The fields used in the remaining two filters were taken
very close to opposition, but at different times and on different
nights. As no attempt was made to track asteroids seen in one
filter with the other, only a small handful of objects were imaged
coincidentally in both. The populations viewed in each filter are
thus statistically independent, though similar.

As in Wiegert et al. (2007), the VW survey was chosen
for its cadence: the same field was imaged thrice in one
night, at ∼45 minute intervals, and once more the following
night. MegaCam’s large FOV allowed for many successful
follow-ups on the second night, which permitted slightly lower
uncertainties on the helio- and geocentric distances, and thereby
the diameters as well. Images from the CFHTLS were processed
with the Elixir pipeline (Magnier & Cuillandre 2004), which
includes bias and dark subtraction, flat-fielding, and fringe
subtraction. Photometric corrections, including color terms,
were computed at this time. The images were then processed
by the TERAPIX data-processing center based in Paris for
fine astrometric correction to the USNO-B1.0 catalog (Monet
et al. 2003). The cleaned images were stored at the Canadian
Astronomical Data Centre, from which we retrieved them and
began the search for moving objects (Gwyn 2012).

2.1. Detection Protocols

After processing via Elixir and TERAPIX, the first stage
of asteroid detection was to use Source Extractor (Bertin
& Arnouts 1996) to identify and locate all sources �3σ
above background. Along with position, Source Extractor
also provided magnitudes (with photometric corrections from
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Figure 1. Detection Efficiencies vs. Apparent Magnitude in g′ and r ′ filters.
Detection efficiencies estimated for the g′ filter are given by green crosses, fitted
by a solid line; r ′ are red x’s fitted by a dashed line.

(A color version of this figure is available in the online journal.)

TERAPIX, see above), FWHM, and flags for saturated, over-
lapping, truncated, and located-on-bad-pixel sources. Stationary
sources and obvious cosmic rays were removed by software,
and the remaining sources were searched for triplets moving
at asteroid-appropriate speeds. These triplets were labeled as
asteroid candidates, to be blinked for a human operator. Can-
didates not clearly asteroidal in appearance (mostly the result
of imperfect cosmic ray removal or variations in image qual-
ity) were discarded. Remaining objects had preliminary orbits
calculated using Väisäla’s method (Väisäla 1939; as described
in Dubyago 1961), with the assumption that the object was im-
aged at perihelion. These orbits were projected forward in time
in an attempt to recover the object in the next night’s image, if
the projection remained within the telescope’s FOV. If so, the
image was blinked to detect an appropriate-magnitude object in
the confidence region from Väisäla orbit projection. The final
catalogue of one- and two-night detections was analyzed for its
size–frequency distribution.

Detection efficiencies (Figure 1) were determined based on
a set of artificial calibration sources injected into representative
frames taken on randomly selected nights. The artificial sources
were implanted moving at typical MBA speeds using the mkob-
jects function of IRAF (Tody 1986); these objects were then
processed as above, including blinking by a human operator.
This information was used both to set a detection limit and to
debias the data above said limit. Our artificial asteroids are im-
planted in six different sets of images (three in each g′ and r ′)
taken on different nights throughout the CFHTLS survey. The
survey covered too many nights to do this effectively on every
night. We want to allow a human operator to examine each of
the artificial asteroids and thus duplicate our detection proce-
dure as carefully as possible since Petit et al. (2004) noted that
the detection efficiency can be overestimated at the faint end if
this step is omitted. The price to pay is a reduced number of
implanted asteroids and a noisier detection efficiency (500 as-
teroids were implanted in six images for a total of 3000 objects)
but this is smoothed out by the fitting of Equation (2) to the data.
The debiasing performed was relatively simple: each detected
asteroid was counted as being equivalent to 1/η(mk) objects,
where η(mk) is the detection efficiency at apparent magnitude
mk in the filter k. Following Gladman et al. (2009), to find η(mk)
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Table 1
Detection Efficiency Fit Parameters

Filter ηo c mL w

g′ 0.74 0.0038 23.1 0.12
r ′ 0.60 0.0048 22.7 0.14

the detection efficiency curves for each filter were fitted by:

η(mk) = ηo − c(mk − 17)2

1 + e(mk−mL)/w
(2)

where ηo is the detection efficiency at mk = 17 and c measures
the strength of the quadratic drop, which changes to an expo-
nential falloff of width w near magnitude mL. The parameters of
the fit in each filter are summarized in Table 1. Objects brighter
than mk = 17 are considered to have detection efficiency ηo.
Our detection efficiency does not reach 100% at brighter magni-
tudes because of asteroids moving into gaps between the CCD
chips. The CFHT MegaCam has a filling factor of 93% (Aune
et al. 2003) and asteroids must be observed in all three frames
to be detected, so we cannot expect an efficiency above 80%.

Our detection efficiency curves are similar in shape to those
of Gladman et al. (2009) and have similar drop-off magnitude
mL and widths w. The main difference is the much lower overall
detection efficiency: our ηo < 0.75 while theirs is about 0.97.
This can be traced to the fill factors of the respective detectors.
The filling factor of the MegaCam CCD is 93%, which means
in any single image there is a .07 probability that the asteroid
image will fall into a gap, and a 0.93 probability that it will not.
The compound probability that it will not fall into a gap in any
of the three images is 0.933 = 0.804, so one cannot expect a
detection efficiency above 80% simply due to CCD chip gaps.
Though not stated in Gladman et al. (2009), the filling factor
of the Kitt Peak National Observatory Mosaic CCD is 99%,
and as a result their detection efficiency would be expected to
reach 0.993 = 0.97, which is consistent with their Figure 6. Our
detection efficiency in r ′ is also lower than in g′ owing to higher
sky brightness (and hence more source confusion) in this filter.

3. RESULTS

3.1. The Data and Its Subsets

The data consists of 16,956 asteroid detections in the main
belt: 7285 in the g′ filter, and 9671 in r ′. As discussed in
the introduction, the populations imaged in each filter have
no appreciable overlap. Thus we cannot segregate based on
color as a first-order approximation to spectral type, as done
in Yoshida et al. (2003) and Gladman et al. (2009; among
others). Just over one-quarter of the asteroid detections could
be identified with objects known by the Minor Planet Center
(MPC): 3711 in the main belt, of which 1384 were detected
in g′ and 2327 in r ′. While the MPC-linked subset is subject
to more complex biases (those of our survey compounded by
those of the MPC database) and has poorer statistics than the
full survey data set, it has the advantage of much-better orbital
data. Instead of arc lengths of one or two days, many of the
objects detected in the MPC database have been observed for
years—45 oppositions in the case of one object—resulting in
much smaller uncertainties on the orbital elements, and the
absolute magnitudes thereby. We can use these better-defined
orbital elements in an attempt to define our own biases, but
due to the complex biases of this subset, we will not examine
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Figure 2. Inclination vs. semimajor axis for all objects observed within the
belt. Objects observed in the r ′ filter are represented by red circles; g′, green
diamonds. Note the decreasing maximum inclination with semimajor axis, a
result of observational bias. Also note the lack of any defining features along
the x-axis; the orbital data is not of high enough resolution.

(A color version of this figure is available in the online journal.)

the size distribution of the MPC-linked objects. Following
Wiegert et al. (2007), and others, we can also split the data
set by semimajor axis, looking for differences between the size
distribution in the inner and outer halves of the asteroid belt
(Wiegert et al. 2007 split the belt in thirds, but this results in an
unacceptable loss of completeness in the innermost bin). This
is of special interest due to the compositional gradient across
the asteroid belt (stony to carbonaceous, moving outward from
the Sun; Cellino 2000). For all size distributions, error bars
will be provided by a standard bootstrap process (Efron 1982)
based on the uncertainty on the sizes of individual asteroids.
Before examining the size distributions, however, it might be
a good idea to become better acquainted with the data and its
biases.

The orbital elements of each asteroid were calculated from
the observations under the assumption of circular orbits by
the method of Dubyago (1961). This method produces slightly
different results than the method of Herget, which was used in
Wiegert et al. (2007), but was chosen for reasons that will be
discussed shortly.

Figure 2 shows each object in the full data set plotted by
inclination and semimajor axis (as estimated from CFHTLS
observations), from 2 to 4 AU. There are a few things to make
note of in this plot: one is the sharp cutoff in inclination, which
decreases with semimajor axis; this is non-physical and is a bias
entirely due to observing geometry and celestial mechanics. One
can also note the distinct lack of features along the x-axis: no
Kirkwood gaps, and indeed, no firm edge to the asteroid belt out
to the Hildas at 4 AU. Due to the short arc lengths, our orbital
data is insufficiently precise to resolve these features; it is for
this reason that we take the far edge of the asteroid belt at 4 AU
rather than the conventional 3.5 AU.

As stated, we can use the MPC-linked subset of the data
to illustrate the errors in the remainder of the data. Figures 3
and 4 illustrate differences between orbital elements in the
MPC database and those estimated from observations in this
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Figure 3. Differences between MPC and observational heliocentric R vs. R.
Objects observed in the r ′ filter are represented by red circles; g′, green
diamonds.

(A color version of this figure is available in the online journal.)

survey. The Δx, where x is an orbital element, is defined as
Δx ≡ xobs − xmpc.

Short-arc observations like the ones in this study are subject
to systematic errors in the determination of the orbital elements.
In particular, since the absolute magnitude H is calculated from

H = m − 5 log10(RΔ) + P (α) (3)

where m is apparent magnitude, R is Sun–body distance (AU),
Δ is the Earth–body distance, and P is a phase function, which
is always less than zero and depends on the phase angle α; any
error in R, Δ, or α contributes to error in H. It is worth noting that
near opposition, an overestimate in R also overestimates Δ and
underestimates α, all three of which act to make the asteroid
appear to have a brighter H; all three conspire to produce a
fainter H in the reverse case.

Figure 3 shows ΔR (the difference between the R calculated
from the asteroid observations and that from the MPC’s orbit)
versus true R for those asteroids that could be linked via the
MPC. The best fit line has a slope of 0.38: clearly we are
underestimating the heliocentric distance to asteroids in the
inner belt and overestimating it in the outer belt. Ivezic et al.
(2001) showed that this was a result of the non-circularities
of the asteroid orbits and our data support this conclusion. In
Figure 4 we see a plot of ΔR versus eccentricity: larger errors
in R are correlated with larger e.

Figure 3 is also the basis for our selection of the
Dubyago (1961) orbit determination method mentioned ear-
lier. Three other methods were tested—Herget’s (Danby
1989), Moulton–Väisäla–Cunningham (Danby 1989), Väisäla’s
(Dubyago 1961)—along with Dubyago’s (1961). Dubyago’s
method, which assumes circular orbits, produces the weakest
trend in a plot of ΔR versus R. Thus studies of short-arc data
could benefit from careful consideration of the orbit determina-
tion algorithm and its performance on the particular data set in
question.

While in theory it might be possible to use the MPC-linked
subset’s orbital differences to debias the main data more fully,
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Figure 4. Differences between MPC and observational heliocentric R vs.
eccentricity. Objects observed in the r ′ filter are represented by red circles;
g′, green diamonds.

(A color version of this figure is available in the online journal.)

the MPC database is certainly neither complete nor without
bias in this range of magnitudes, and the combined bias of the
MPC database and CFHTLS is fairly complex and would need
to be investigated in depth. (For example, the reversal of the
inclination bias’ relationship with semimajor axis). Figure 5 is
another example of this, showing the completeness of the two
populations—note how much less populated the MPC-linked
subset (Figure 5(b)) is at higher magnitudes. The lines marking
the 50% detection efficiency limit for the full population have
essentially become the limit of completeness in the MPC-linked
subset.

Gladman et al. (2009) mention two systematic effects that
can affect surveys of our type. The first bias results from using
a single cutoff magnitude and taking the detection efficiency to
be constant above it. This was done in Wiegert et al. (2007) but
here we avoid this issue by adopting the detection efficiency of
Equation (2). The second bias is introduced by uncertainties in
the heliocentric distance R (as well as Δ and the phase) as a
result of the short arcs used here. Our data set certainly includes
some systematics of this sort, as can be seen from Figure 3.

The MPC-linked data gives us some idea of the uncertainties
in the data. But can we use this knowledge to improve our data
set? The Sloan Digital Sky Survey (Ivezic et al. 2001) had data
with short arcs (<1 day), and used a subset of their data linked
to asteroids with well-determined orbit to examine and refine
remove trends for their data. We might attempt to do the same by,
for example, fitting a line or curve to Figure 3, and using that line
or curve to remove the overall trend seen in the figure from our
entire sample. This procedure might reduce the average value of
ΔR to zero at all R, though some scatter would remain. However
we do not know R but only Ro (our calculated heliocentric
distance) for our larger sample. A fit based on Ro could be used,
but since the difference between R and Ro is largely due to the
(unknown) eccentricity, using Ro as a proxy for R is dangerous.
Unless the larger sample has the same eccentricity distribution
as the MPC-linked sample across the entire belt (possible but
not known), new biases may be introduced. We recognize that
systematic biases exist within our sample, but have chosen not
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Figure 5. Absolute magnitude vs. heliocentric R for objects in both the full
(a) and MPC-linked (b) data sets. Objects observed in the r ′ filter are represented
by red circles; g′, green diamonds. The dashed and solid black lines represent
the 50% and 90% confidence limits for detection, respectively.

(A color version of this figure is available in the online journal.)

to risk compounding the problem by applying further empirical
corrections.

3.1.1. Absolute Magnitude Distributions

Here we present fits in the absolute magnitude distribution
that begin at Hr = 17.1 and Hg = 17.6, corresponding to
the 50% normalized detection limit in each filter. Fits are
only continued to absolute magnitude H = 15, since the
size-distribution of the belt is well known below this, and
also to avoid the drop-off at low magnitudes where we again
lose completeness. The slopes of the fits to the differential
distributions are summarized in Table 2. No difference greater
than 1σ is observed between filters in either the inner or outer
half of the asteroid belt, nor between filters. The differential H
distributions are given in Figures 6–8.

Figure 6. Flux-debiased differential H distribution for the entire asteroid belt
(2 AU � a � 4 AU). Dotted red line is the distribution seen in the r ′ filter;
dashed green, g′. The solid lines represent the fit to each filter (r ′ black, g′ blue)
and vertical lines indicate the upper and lower limits of the fit in each filter (with
the dotted red line corresponding to the r ′ filter; dashed green, g′).
(A color version of this figure is available in the online journal.)

Figure 7. Flux-debiased differential H distribution for the inner asteroid belt
(2 AU � a � 3 AU). Dotted red line is the distribution seen in the r ′ filter;
dashed green, g′. The solid lines represent the fit to each filter (r ′ black, g′ blue)
and vertical lines indicate the upper and lower limits of the fit in each filter (with
the dotted red line corresponding to the r ′ filter; dashed green, g′).
(A color version of this figure is available in the online journal.)

Table 2
Slope of Flux-debiased Differential Absolute Magnitude Distributions

Region g′ r ′

Full Belt 0.3441 ± 0.0108 0.3102 ± 0.0181
Inner 0.3585 ± 0.0188 0.3182 ± 0.022
Outer 0.3383 ± 0.0195 0.3383 ± 0.0324

There are few interesting features on the curves: across the
belt, the r ′ and g′ distributions are well behaved and linked
closely to its power law from H = 15 until loss-of-completeness
sets in at high magnitudes. The notable exception is that Figure 8
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Figure 8. Flux-debiased differential H distribution for the outer asteroid belt
(3 AU � a � 4 AU). Dotted red line is the distribution seen in the r ′ filter;
dashed green, g′. The solid lines represent the fit to each filter (r ′ black, g′ blue)
and vertical lines indicate the upper and lower limits of the fit in each filter (with
the dotted red line corresponding to the r ′ filter; dashed green, g′).
(A color version of this figure is available in the online journal.)

Figure 9. Flux-debiased cumulative H distribution for the entire asteroid belt
(2 AU � a � 4 AU). Dotted red line is the distribution seen in the r ′ filter;
dashed green, g′. The solid lines represent the fit to each filter (r ′ black, g′ blue)
and vertical lines indicate the upper and lower limits of the fit in each filter (with
the dotted red line corresponding to the r ′ filter; dashed green, g′).
(A color version of this figure is available in the online journal.)

does show some low-amplitude wavelike action superimposed
on the power law in the fitted region. Since they are not
reproduced in the cumulative distribution (Figure 11), it is likely
that what is being seen is simply noise, which cancels out in the
cumulative H distribution (CHD).

Summing up the bins in the differential distributions yields
CHDs for the belt as a whole and its two halves. Since there
was no discernable difference between debiased and raw-
count differential distribution, hereafter only the hopefully-

Figure 10. Flux-debiased cumulative H distribution for the inner asteroid belt
(2 AU � a � 3 AU). Dotted red line is the distribution seen in the r ′ filter;
dashed green, g′. The solid lines represent the fit to each filter (r ′ black, g′ blue)
and vertical lines indicate the upper and lower limits of the fit in each filter (with
the dotted red line corresponding to the r ′ filter; dashed green, g′).
(A color version of this figure is available in the online journal.)

Figure 11. Flux-debiased cumulative H distribution for the outer asteroid belt
(3 AU � a � 4 AU). Dotted red line is the distribution seen in the r ′ filter;
dashed green, g′. The solid lines represent the fit to each filter (r ′ black, g′ blue)
and vertical lines indicate the upper and lower limits of the fit in each filter (with
the dotted red line corresponding to the r ′ filter; dashed green, g′).
(A color version of this figure is available in the online journal.)

Table 3
Slope of Flux-debiased Cumulative Absolute Magnitude Distributions

Region g′ r ′

Full Belt 0.3894 ± 0.0104 0.3862 ± 0.0153
Inner Belt 0.3925 ± 0.0178 0.3894 ± 0.0104
Outer Belt 0.3537 ± 0.0055 0.3652 ± 0.0043

more-accurate flux-debiased counts will be used. The slopes
of the power-law fits to the CHDs are given in Table 3. Unlike
the differential distribution, there is a statistically discernable
difference between the two filters, at least in the outer belt,
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where the r ′ distribution is shallower. Between the inner and
outer belt, the r ′ population also exhibits a detectable shallowing
in slope. Looking at the distributions themselves (Figures 9–11),
we see that in the fitted region, the distributions are essentially
flat across the belt: no waves are observed in either filter, and
they match very closely to the fitted power laws.

4. CONCLUSIONS

4.1. Slope of the Size Distributions

The slopes of respective distributions of the full data set
are summarized in Tables 2 and 3. The slope of the size
distributions all remained constant down to the completeness
level, Hr = 17.1 and Hg = 17.6. We can then conclude that the
size-strength transition occurs at smaller scales than this.

The slopes of the size distributions of the populations seen
in the g′ and r ′ filters are statistically indistinguishable, except
when considering the belt as a whole in the differential distribu-
tion, which is steeper in r ′. Since the difference is fairly small
(1.0σ ) and is not reproduced when looking at the cumulative
distribution, nor when splitting the belt into two halves in the
differential distributions, it is likely that this result is spurious.
We therefore conclude there is no real difference between the
slopes of the populations imaged in each filter.

There is a little more evidence for a change in slope across
the asteroid belt. The r ′ and g′ CHDs show a 1.0σ and 2.6σ
shallowing, respectively but no statistically relevant difference
is seen in the differential distributions. The average difference of
the two g′ distributions gives a shallowing with a strength of only
1.5σ ; interesting, but not conclusive. It is certainly possible that
a shallower slope exists in the outer belt, but is not absolutely
clear in this data.

Why might the size distribution appear shallower in the
outer belt? It may reflect a real compositional difference: the
inner asteroid belt is thought to consist mostly of stony and/
or metallic S-type asteroids, whereas carbonaceous C-types
are more expected to be prevalent in the outer belt (Gradie
& Tedesco 1982). Why this compositional difference would
result in an apparent shallowing of the size distribution is
not clear. It seems likely that the Yarkovsky effect would act
more strongly on the darker, possibly less heat conducting
(from meteorites) carbonaceous bodies (Opeil et al. 2010),
providing a stronger population sink and thus better-depressing
the population at small sizes. This is conjectural, however.
Provided the slope difference exists, to test this explanation
of it would require orbital simulations that incorporate the
compositional gradient of the asteroid belt and the Yarkovsky
effect. Better observational data is needed to clarify both the
exact nature of any compositional gradient, and the possible
gradient in the slope of the size distribution seen here.

The slopes fitted to the size distributions in this study fall
within the range given by other studies in the literature, and
support the finding in Gladman et al. (2009) that there is no
change in slope until sub-kilometer scales.

4.2. Waves in the Size Distributions

There is no compelling evidence for waves in the size
distribution at magnitudes fainter than H = 14. The only feature
that is conclusively present is the bump that appears to occur
between the large-scale completeness limit and H = 14, and
is probably associated with the small-scale bump described
in Davis et al. (2002). At smaller scales, there are wavelike
features in the differential distributions of both filters, but they

do not persist into the cumulative distributions. This is a strong
indication that these “wavelike features” are, in fact, the result
of random noise that is canceled out by the summation that
produces the cumulative distribution. None of the cumulative
diameter distributions (see Figures 9–11) show any indication
of waves at magnitudes fainter than H = 15. The conclusion is
that this survey does not show any evidence for any previously
unobserved waves in the size distribution. Since waves in the size
distribution are a result of the strength–gravitational cohesion
slope transition (O’Brien & Greenberg 2003), the discovery of
new waves at smaller sizes would have forced a revision of the
size at which the transition is expected to occur.

4.3. Comparison with Wiegert et al. (2007)

This study is an extension of the one made in Wiegert et al.
(2007); it uses the same survey and the same asteroid-extraction
methods, simply on a larger scale; the current study contains
≈10× the number of asteroids. There are greater differences
in results than one might expect from the improvement in
statistics. Notably, Wiegert et al. (2007) reports a significant
difference in slope between the r ′ and g′ size distributions.
The difference comes down to a better understanding of the
data’s completeness. Wiegert et al. (2007) attempts to fit the
size distribution far lower than it safely can without performing
debiasing. Even with flux-based debiasing, this study’s small-
size cutoff is an order of magnitude larger than theirs (1.6 km
versus 0.3 km). In retrospect, we see that having different
cut-offs for the g′ and r ′ filters in a region where they are
rolling over due to incompleteness is essentially guaranteed
to produce differing slopes. As for the knee in the curve,
Wiegert et al. (2007) reports it to be at 3.5 km in r ′ and
2.5 km in g′; but evidently it disappeared under the weight
of increased statistics, as there is no evidence for it in the larger
data set.

Based on observations obtained with MegaPrime/MegaCam,
a joint project of CFHT and CEA/DAPNIA, at the
Canada–France–Hawaii Telescope (CFHT), which is operated
by the National Research Council (NRC) of Canada, the Institut
National des Science de l’Univers of the Centre National de la
Recherche Scientifique (CNRS) of France, and the University
of Hawaii. This work is based in part on data products pro-
duced at the Canadian Astronomy Data Centre as part of the
Canada–France–Hawaii Telescope Legacy Survey, a collabora-
tive project of NRC and CNRS. This work was also supported in
part by the National Science and Engineering Research Council
of Canada.
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Väisäla, Y. 1939, Ann. Acad. Sci. Fenn. A, 52, 2 (Astron.-Opt. Inst. Univ. Turku
Informo 1)

Wiegert, P., Balam, D., Moss, A., et al. 2007, AJ, 133, 1609
Yoshida, F., & Nakamura, T. 2007, P&SS, 55, 1113
Yoshida, F., Nakamura, T., Watanabe, J.-I., et al. 2003, PASJ, 55, 701

8

http://dx.doi.org/10.1016/j.icarus.2009.02.012
http://adsabs.harvard.edu/abs/2009Icar..202..104G
http://adsabs.harvard.edu/abs/2009Icar..202..104G
http://dx.doi.org/10.1126/science.216.4553.1405
http://adsabs.harvard.edu/abs/1982Sci...216.1405G
http://adsabs.harvard.edu/abs/1982Sci...216.1405G
http://dx.doi.org/10.1088/0004-6256/143/2/38
http://adsabs.harvard.edu/abs/2012AJ....143...38G
http://adsabs.harvard.edu/abs/2012AJ....143...38G
http://dx.doi.org/10.1016/0019-1035(90)90168-9
http://adsabs.harvard.edu/abs/1990Icar...84..226H
http://adsabs.harvard.edu/abs/1990Icar...84..226H
http://dx.doi.org/10.1086/323452
http://adsabs.harvard.edu/abs/2001AJ....122.2749I
http://adsabs.harvard.edu/abs/2001AJ....122.2749I
http://dx.doi.org/10.1006/icar.1997.5876
http://adsabs.harvard.edu/abs/1998Icar..131..245J
http://adsabs.harvard.edu/abs/1998Icar..131..245J
http://dx.doi.org/10.1086/420756
http://adsabs.harvard.edu/abs/2004PASP..116..449M
http://adsabs.harvard.edu/abs/2004PASP..116..449M
http://dx.doi.org/10.1086/345888
http://adsabs.harvard.edu/abs/2003AJ....125..984M
http://adsabs.harvard.edu/abs/2003AJ....125..984M
http://dx.doi.org/10.1016/S0019-1035(03)00145-3
http://adsabs.harvard.edu/abs/2003Icar..164..334O
http://adsabs.harvard.edu/abs/2003Icar..164..334O
http://dx.doi.org/10.1016/j.icarus.2010.01.021
http://adsabs.harvard.edu/abs/2010Icar..208..449O
http://adsabs.harvard.edu/abs/2010Icar..208..449O
http://dx.doi.org/10.1111/j.1365-2966.2004.07217.x
http://adsabs.harvard.edu/abs/2004MNRAS.347..471P
http://adsabs.harvard.edu/abs/2004MNRAS.347..471P
http://dx.doi.org/10.1086/512128
http://adsabs.harvard.edu/abs/2007AJ....133.1609W
http://adsabs.harvard.edu/abs/2007AJ....133.1609W
http://adsabs.harvard.edu/abs/2007P&SS...55.1113Y
http://adsabs.harvard.edu/abs/2007P&SS...55.1113Y
http://adsabs.harvard.edu/abs/2003PASJ...55..701Y
http://adsabs.harvard.edu/abs/2003PASJ...55..701Y

	1. INTRODUCTION
	1.1. Previous Work

	2. METHODS
	2.1. Detection Protocols

	3. RESULTS
	3.1. The Data and Its Subsets

	4. CONCLUSIONS
	4.1. Slope of the Size Distributions
	4.2. Waves in the Size Distributions
	4.3. Comparison with Wiegert etal. (2007)

	REFERENCES

