
A numerical comparison with the Ceplecha analytical meteoroid orbit

determination method

David L. CLARK* and Paul A. WIEGERT

Department of Physics and Astronomy, University of Western Ontario, London, ON N6A 5B8, Canada
*Corresponding author. E-mail: dclark56@uwo.ca

(Received 16 January 2011; revision accepted 11 May 2011)

Abstract–Analytic methods by Ceplecha have long been used for the determination of
meteoroid heliocentric orbits. These methods include both the derivation of an initial
atmospheric contact position and velocity state, and the calculation of an orbit at infinity
based on zenithal attraction assumptions. Herein, we describe a numerical integration-based
verification for a portion of the Ceplecha methods, a verification driven by the need for an
accurate meteoroid ephemeris in the hours before atmospheric contact. We show a close
correspondence in analytic and numerical results, with a previously undocumented minor
correction to a meteoroid’s longitude of the ascending node.

INTRODUCTION

In 2007, the Fireball Retrieval on Survey Telescopic
Image project (FROSTI) (Clark 2010) was initiated to
locate meteoroids on pre-existing sky survey images. That
is, we take a set of observed fireballs and ask whether or
not the objects in question were serendipitously observed
by one of the large telescopes. If a search of the telescope
digital archive turns up images of the correct portion of
the sky at the correct time, we examine these images
further to determine whether or not the meteoroid was
inadvertently imaged in the days or hours before impact.

An important aspect of this project is the ability to
accurately model the location of a meteoroid at specific
epochs in the hours before atmospheric contact.
Ceplecha (1987) describes the complete process for
deriving a heliocentric meteoroid orbit at infinity from
multistation photographic records of a meteor event. We
use the term ‘‘orbit at infinity’’ for expediency to refer to
the orbit of a meteoroid before it is appreciably
perturbed by the Earth. Implementations of these
methods continue to be used in video-based meteor
observing systems, both in the determination of contact
position and velocity state of a meteoroid, and the
derivation of a heliocentric orbit from that state.
However, neither the instantaneous orbital elements at
the time of contact, nor the computed orbit at infinity,
may be used to provide an accurate position of the

object at all points in time before contact. During this
time, the Earth’s gravity continuously perturbs the
meteoroids orbit as it approaches the Earth. Therefore, it
was decided to implement a gravitational integrator to
model the trajectory of a meteoroid on Earth approach.
The integrator steps back in time in increasing step sizes,
beginning with the atmospheric contact time, and ending
at an arbitrary 2 months before contact. At this point
the object’s heliocentric orbit can be assumed to be very
near the orbit at infinity. We compare the differences
between the orbit at infinity obtained by this numerical
method and that obtained by using the analytical
method of Ceplecha (1987).

Published data on meteor events typically include
both the contact state and the computed orbital elements.
The form and reference frames of the contact state vary
by publication. The object contact position is typically
provided in geocentric or geographic longitude, latitude,
and height, but may be provided in geocentric rectangular
form. The object’s contact velocity vector is often
described in an apparent J2000 equatorial radiant with an
absolute velocity magnitude, but again may be provided
in a geocentric rectangular vector form. In all cases
encountered so far, the provided state needed to be
adjusted to account for the Earth’s position and its
rotational and orbital motion. The publication of contact
state and elements fortuitously permits the verification of
both the gravitational integration approach and the
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Ceplecha analytical orbit determination method. The
altitude at which meteors are first observed varies
from roughly 80–120 km (Ceplecha et al. 1998), the
altitude being dependent on meteor characteristics,
atmospheric conditions, the location of the observer, and
the characteristics of the instrumentation used. It is
assumed that the path of a meteoroid during initial
atmospheric contact is dominated by the original orbital
path and perturbation due to Earth’s gravity, and not by
interaction with the upper atmosphere. Therefore, the
choice of contact position along the object path should
not significantly alter the resulting orbit at infinity derived
by either the analytic or numerical methods.

The data used in this report are two collections of 10
fireball events from the European Network. The first
collection consists of the 10 largest mass events published
in Spurný (1997). The second collection was provided
by Spurný in private correspondence (Spurný personal
communication), including previously published orbits:
EN060402 Neuschwanstein (Spurný et al. 2002),
EN171101 Tur’yi Remety (Spurný and Porubčan 2002),
EN280506 Legnica (Spurný et al. 2007), and EN310800
Vimperk (Spurný and Borovička 2001).

FIREBALL DATA

The data of interest extracted from Spurný (1997,
personal communication) that define the atmospheric
contact state of an event are: hB, kB, uB, the geographic
altitude, longitude, and latitude of the beginning of the
detected fireball trail; aR, dR, the J2000 apparent right
ascension and declination of the fireball radiant; and m¥,
the speed of the object with respect to the observer at
contact. The calculated heliocentric orbits are expressed
with the J2000 orbital elements: a, semi-major axis; e,
eccentricity; i, inclination; X, longitude of the ascending
node; and x, argument of perihelion. In the Spurný
(1997) paper, means and standard deviations are
provided for all contact state measures including the
epoch of the event, and for all calculated orbital
elements. In Spurný (personal communication), the
uncertainties in epoch and position are not provided.
Spurný states that these uncertainties are accounted for
in the uncertainties in the radiant and velocity. The
relevant data from the two Spurný collections are listed
in Tables 1 and 2.

METHOD

The numerical determination of a meteoroid’s orbit
at infinity involves calculating a collection of possible
heliocentric position and velocity states at contact,
gravitationally integrating these states back over time,
and performing a statistical summarization over the sets

of orbital elements calculated from the states at the end
of the integration. The heliocentric contact state of an
object is represented as a cloud of 10,000 probability
members, each member having geographic position (kB,
uB, hB) and a velocity vector represented by radiant (aR,
dR) and velocity v¥, all at an epoch t, where each of these
values (including the epoch) are generated from a
Gaussian distribution over the reported means and
standard deviations. If a value’s standard deviation was
not provided, the reported value was used as the mean
with a standard deviation of 0. Each probability cloud
member’s position-velocity contact state is converted to
heliocentric coordinates (xH, yH, zH) and (vxH, vyH, vzH),
in preparation for integration of each member, as
follows:

• The member’s geocentric coordinates centered on
Greenwich (xG, yG, zG) are calculated using
the WGS84 theory (Defense Mapping Agency,
1996).

• The mean rotation of the Earth h is calculated using
the methods of Meeus (1991) Chapter 11.

• The apparent sidereal rotation of the Earth h¢ is
calculated from h as described in Chapters 11 and 21
of Meeus (1991). This involves the calculation of the
mean obliquity of the ecliptic e0, the nutation in
longitude DW, and the nutation in obliquity De. The
calculations of nutation and obliquity require that
the time of the event be expressed in Dynamical Time
(TD), not universal time (UT). This difference in
these timeframes is taken from a table of adjustments
available on the US Naval Observatory web site
(USNO, 2010).

• The geocentric position (xG, yG, zG) is rotated by h¢
giving the Earth-centered equatorial coordinates with
respect to the equinox of the date (xE, yE, zE).

• (xE, yE, zE) are converted to equinox J2000 (xEJ, yEJ,
zEJ) by converting to spherical coordinates (aE, dE,
rE ), precessing to J2000 by the methods of Meeus
(1991, chapter 20), and converting back to rectangular
coordinates. The J2000 right ascension aE is retained
for later use.

• The apparent contact velocity of the probability
cloud member equinox J2000 (vxoJ, vyoJ, vzoJ) is
calculated directly from aR, dR, and negated v¥.

• The velocity due to the rotation of the Earth (vxRot,
vyRot, vzRot) is the tangent vector at the probability
cloud member’s Earth-centered position expressed in
equatorial coordinates for the epoch of the date.
The magnitude vROT of the velocity is taken from
a complete rotation of the earth at the member’s
distance and declination. Care must be taken that a
sidereal adjustment be made if the Earth’s rotation
period is expressed in solar time units. vxRot and vyRot
are then calculated from vROT and aE; vzRot is 0.
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• (vxRot, vyRot, vzRot) are converted to equinox J2000
(vxRotJ, vyRotJ, vzRotJ) as with the geocentric position
above.

• The Earth-centered equatorial J2000 velocity (vxEJ,
vyEJ, vzEJ) is the sum of (vxoJ, vyoJ, vzoJ) and (vxRotJ,
vyRotJ, vzRotJ).

• The Earth-centered equatorial J2000 position (xEJ,
yEJ, zEJ) and velocity (vxEJ, vyEJ, vzEJ) are converted
to heliocentric coordinates (xEH, yEH, zEH) and (vxEH,
vyEH, vzEH) by adding the Earth’s position at the
epoch using the JPL Horizons DE405 ephemeris
(Markwardt 2010). The epoch must be expressed in
Terrestrial Time (TT), equivalent to TD as calculated
above.

• These equatorial coordinates are converted to
heliocentric ecliptical coordinates (xH, yH, zH) and
(vxH, vyH, vzH) by converting to spherical coordinates,
converting to ecliptical coordinates as in Meeus (1991,
chapter 12), and converting back to rectangular
coordinates. These calculations again require e0 and
De as calculated above.
Not wanting to re-invent the wheel in the field of

numerical integrators, and understanding that this
application did not require optimizations for performance,
an existing C-language implementation of the RADAU-
15 was adapted for this project. RADAU-15 is a 15th-
order differential equation integrator documented in
Everhart (1985). The RADAU family of integrators is
characterized by the use of Gauss-Radau spacings for
sequence substeps. The initial implementation of the
RADAU integrator was tested by integrating the major
objects of the solar system over 100 years, and comparing
the results to the JPL DE405 ephemerides. The results of
this comparison were deemed acceptable for the
purposes of this project (e.g., an 8 arc-second difference
in solar longitude and an oscillating .0000004 AU error
in solar distance for Earth after 100 years). This test
required the implementation of relativistic adjustments, a
refinement not required for the integration of meteoroid
objects on Earth approach.

To reduce the potential for overly large time-steps
introducing errors in the integration, four integration
runs were performed on each of the 10,000 object
probability cloud members representing each fireball
event: the 30 s before contact at 1 ⁄30 s time steps,
the remainder of the first 5 min at 1 s time steps, the
remainder of the first day at 1 min time steps, and
the remainder of the first 2 months at 1 h time steps. The
final positions in heliocentric rectangular coordinates at
2 months before contact are the only results of interest
for this article. However, the heliocentric position-
velocity state at each time step was stored to support the
visualizations of probability cloud evolution over time,
and to provide visual clues of the position of the object

in any discovered sky survey images. Approximately
4,000 time steps are stored for each of the 10,000
members of each event, resulting in approximately 2
gigabytes of ephemeris data per event.

The above integration results in a position-velocity
state (xH0, yH0, zH0, vxH0, vyH0, vzH0) derived from each
calculated probability cloud member contact state (xH,
yH, zH, vxH, vyH, vzH). Each instance of (xH0, yH0, zH0,
vxH0, vyH0, vzH0) is converted to orbital elements (a0, e0,
i0, X0, x0) using standard techniques. The mean and
standard deviation of each orbital element is calculated
across the 10,000 members arriving at a calculated
(a, e, i, X, x) with uncertainties for each meteor event.
These orbital elements and uncertainties are compared
to the published values for the orbits at infinity. In
should be noted that there is high covariance among
the orbital elements, so a probability cloud generated
from both an event’s calculated and published orbital
elements and uncertainties exceeds the size of the
cloud represented by the set of integrated heliocentric
states.

An analysis was performed on the Spurný (1997,
personal communication) event integrations to measure
the validity of the arbitrary 2-month integration duration
decision. Using the definition of convergence to n digits
being the point at which all orbital elements measured in
AU or degrees cease to vary by more than 0.5 · 10)n ⁄h,
convergence to four digits occurred from 1.2 to 8.0 days
into the integrations. Convergence to five digits occurred
as quickly as 4.0 days, but in many cases did not occur
at all within the 2-month duration. This failure to
converge is consistent with precession and other
perturbation effects. One could conclude that the 2-
month duration could be relaxed somewhat to arrive at a
meaningful precision. Errors due to the integrator and
the choice of integration steps were measured by forward
integrating the meteoroids of the two Spurny collections,
starting at the calculated position-velocity states
2 months before contact, and ending at the time of
contact. The largest distance between the original and
integrated contact points was 22 m., and the greatest
difference in contact speed was 0.015 m ⁄ s.

RESULTS AND ANALYSIS

Tables 3 and 4 show the comparison of integration
derived orbit elements and published analytically derived
results for the Spurný (1997, personal communication)
event collections respectively. Orbital elements are
presented to a constant number of decimal points for
easier comparison and readability.

Table 3 and 4 demonstrate for the most part a good
correspondence between published and integrated orbital
elements, thereby supporting the Ceplecha analytic
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method. However, a deeper inspection reveals small
discrepancies in means and uncertainties which bear
mentioning. Because these discrepancies are relatively
small, an understanding of uncertainties in the cloud
integration method is important. Based on the testing of
the RADAU integrator, it is believed the actual
integration steps do not significantly add to uncertainties.
However, the sampling of 10,000 probability cloud
elements over seven dimensions (three position, three
velocity, one time) does require attention. Multiple sets of
10,000-member event integrations were performed on the
Spurný (personal communication) collection to determine
the impact of differing random number seeds used for the
initial geocentric state on the eventual orbital elements of
probability cloud members. The largest difference in
mean values of each orbital element are called ‘‘cloud
uncertainties’’ for the purpose of this discussion, and are
recorded in the first line of Table 5. Differences between
published and integrated orbital elements that are smaller
than the cloud uncertainties are ignored. The cloud
uncertainties in fact have little impact on this analysis, as
the majority of discrepancies noted exceed the cloud
uncertainties.

Comparison of results begins with the comparison
of the mean values of the orbital elements. Lines 2–3
and 8–9 of Table 5 enumerate the significant negative

and positive deltas for the Spurný (1997, personal
communication) event collections respectively. The
Spurný (1997) data appear to indicate a systematic bias
toward larger integrated a and X, with lesser significant
or no bias on other elements, while the Spurný
(personal communication) data indicate a bias toward
larger integrated i and X. Note that these are
statements on bias, not significance. The significance of
the deltas depends on the uncertainties of the analytic
methods. Lines 4–5 and 10–11 of Table 5 enumerate the
numbers of events for which the published uncertainty
range exceeds the integrated uncertainty range in size,
and vice-versa. Spurný (1997) reports smaller uncertainty
ranges for all elements than can be confirmed by the
integration method. For the most part, Spurný (personal
communication) is either equally or less aggressive on the
uncertainty ranges than the integration method, with the
sole exception of X. Lines 6–7 and 12–13 of Table 5
enumerate the cases where one method’s results fall
outside the uncertainty ranges of the other, and thus
measures the significance of the deltas. The integrated
results for Spurný (1997) fall reasonably well within the
more aggressive published uncertainties, while the
published results fall consistently within the integrated
uncertainties for all elements but X. For Spurný (personal
communication) and the similar uncertainty range sizes

Table 5. Analysis of integrated and published orbital elements.
Line Statistic a e i X x

1 Cloud uncertainty = Largest mean value differences due to
random number seeding of clouds

0.0001 AU 0.0000 0.0013 � 0.0001 � 0.0028 �

Analysis of 10 Spurný (1997) deltas in means and uncertainties (Delta = Integrated)Published)
2 # events where delta of means is less than negative cloud

uncertainty
2 3 5 2 5

3 # events where delta of means is greater than positive cloud
uncertainty

8 7 5 8 5

4 # events where published uncertainties exceed integrated
uncertainties

3 3 2 4 1

5 # events where integrated uncertainties exceed published

uncertainties

7 7 8 6 9

6 # events where the integrated mean lies outside one standard
deviation of the published result

4 3 2 10 4

7 # events where the published mean lies outside one standard
deviation of the integrated result

1 0 0 10 1

Analysis of 10 Spurný (personal communication) deltas in means and uncertainties (Delta = Integrated)Published)
8 # events where delta is less than negative cloud uncertainty 7 5 1 0 3
9 # events where delta is greater than positive cloud uncertainty 3 5 9 10 6
10 # events where published uncertainties exceed integrated

uncertainties
5 5 6 1 7

11 # events where integrated uncertainties exceed published
uncertainties

5 5 4 9 3

12 # events where the integrated mean lies outside one standard

deviation of the published result

4 2 2 10 5

13 # events where the published mean lies outside one standard
deviation of the integrated result

4 2 2 10 5

A numerical comparison with the Ceplecha method 1223



for both the analytic and integration methods, we see
good alignment of e and i, somewhat significant deltas in
a and x, and the significant delta in X as in the Spurný
(1997) data. Positive deltas across the orbital elements
appear more often than negative deltas, although with the
exception of X, there does not appear to be consistent
dominance in the sign of the deltas for any one element
across both meteoroid collections.

The most obvious difference in published and
integrated results is the consistent deltas in longitude of
the ascending node X across all events in both data
collections. The magnitudes of these deltas are not large,
the largest being just over 0�.15 for the event EN231006.
The significance of the deltas lies in the very tightly
confined published uncertainties for X, consistently
stated as < 0�.001 and often quoted as £ 0�.0001. The
source of the discrepancy lies in formula (48) of Section
11 of Ceplecha (1987), where X is directly derived from
the longitude of the Sun, either as X = LSUN or
X = LSUN ) p. This assumption does not take into
account the perturbation of the meteoroid’s orbit as it
enters into Earth’s gravity well. Formulas (38)–(40) of
Ceplecha (1987) do account for the zenithal attraction of
the radiant; however, this is only an adjustment to an
observer-centered direction of motion. Formula (48)
does not derive from (38)–(40), but instead reverts to an
assumption that the post-perturbation heliocentric
longitude of the Earth’s location accurately reflects
where the object would have passed through the ecliptic
plane if the Earth were not nearby. For meteoroids on
low inclination orbits (such as EN231006 at 0�.53), a
small perturbation causing small inclination changes
have substantial impact on the ascending node, the
impact being dependent on cos i. This impact is difficult
to illustrate with orbits of low inclination, but is more
easily visualized with meteoroids with higher inclination
orbits. The orbit Bunburra Rockhole meteoroid,
documented in Bland et al. (2009) and in personal
correspondence (Spurný personal communication), has a
published orbit of a = 0.851 ± 0.002 AU, e = 0.245 ±
0.003, i = 9�.07 ± 0�.17, X = 297�.59525 ± 0�.00010,
x = 209�.9 ± 0�.2 and an integrated orbit of a =
0.851 ± 0.002 AU, e = 0.246 ± 0.003, i = 9�.11 ±
0�.17, X = 297�.696 ± 0�.003, x = 209�.8 ± 0.2.
Fig. 1 demonstrates the shift in X for Bunburra
Rockhole, made more visually evident by its relative
steep inclination. The dominance in positive deltas in X
requires further analysis. A positive delta in X represents
the meteoroid being drawn back toward the Earth,
contacting the Earth at a lesser X than would have been
the case if not perturbed. A cursory look at the geometry
of the two negative delta X events shows EN250594 Ulm
approaching the Earth sun-side, passing over the Earth
before contacting on the night-side, and EN251095A

Tisza’s highly eccentric orbit carrying Tisza on a very
steep night-side approach.

CONCLUSION

Numerical integrations of 20 meteoroid contact
states yield consistent results with the analytic methods of
Ceplecha (1987). The sole point of discrepancy is a small
difference in the longitude of the ascending node X, this
discrepancy being due to a failure to completely account
for the impact of the Earth’s gravity on the meteoroid
path. The Ceplecha method assumes the heliocentric
longitude of the Earth at contact reflects the pre-
perturbation longitude of the node, which is not the case.
The correction in X is small, 0.15 being the largest
discrepancy yet encountered. In relation to the uncertain
of the other orbital elements, this discrepancy is not
overly significant, so the use of the existing analytic
methods are likely sufficient for the categorization of
meteoroid orbits. However, the very tight uncertainties
often reported for X are far too aggressive, and should be
minimally expanded to incorporate this discrepancy. If a
highly accurate X is required, as would be the case for
predicting the Earth’s interaction with meteoroid
streams, an analytic correction to the Ceplecha method
should be developed.
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Fig. 1. The shift DX of the ascending node X of the
instantaneous orbit of the Bunburra Rockhole meteoroid.
From left to right, top to bottom, the progress of the shift is
shown, 4, 3, 2, and 1 h before contact, at contact, and at
contact with the shift highlighted. The solid diagonal line
represents the orbit at infinity. The dashed diagonal
line represents the instantaneous orbit. The horizontal solid line
represents the elliptic along which X is measured.
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