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ABSTRACT
An asteroid moving around the Sun having approximately the same mean motion and mean

longitude as a planet, but a different eccentricity, circles the planet like a retrograde satellite

even when the distance is large enough so that it is not a bound satellite. If the orbits are

coplanar, then the motion is stable in the secular approximation. When the orbits are inclined

enough, an asteroid can be trapped into such a quasi-satellite (QS) motion for a finite period

of time. The conditions under which this can occur are discussed, improved criteria for the

recognition of this type of motion are developed, and numerical examples from real QS objects

are provided.

Key words: celestial mechanics – minor planets, asteroids – planets and satellites: individual:

Earth – Solar system: general.

1 I N T RO D U C T I O N

When an asteroid moves near a planet, like the Near Earth Asteroids

(NEA) in the neighbourhood of the Earth, the orbit still remains es-

sentially a heliocentric ellipse. However, the small perturbations due

to the planet’s presence at times nevertheless affect the motion con-

siderably. This happens especially when there is a 1:1 resonance, that

is, when the periods are (almost) the same. Well-known such cases

are the Trojan and horseshoe orbits, while the quasi-satellite (here-

after QS) orbit is less well known, although the earliest publications

on the subject is (to our knowledge) Jackson (1913). Also Henon &

Guyot (1970) and Danielsson & Ip (1972) discussed this kind of or-

bital behaviour. Later such an orbit was used in astronautics Kogan

(1990) which led Lidov & Vashkov’yak (1994a,b) to further inves-

tigate the subject. Also Mikkola & Innanen (1997) and Wiegert,

Innanen & Mikkola (2000) (who were unaware of the earlier works

in the subject) considered such orbits both analytically and numer-

ically. Namouni (1999) considered the co-orbital motion of planets

and asteroids in a rather general way, revealing that, for example,

horseshoe orbits can change to QS orbits and back.

Later (Connors et al. 2002, 2004), a temporary QS of the Earth

and also one of the planet Venus (Mikkola et al. 2004) were dis-

covered. Since these real cases are only temporarily in a QS orbit,

there is some motivation to improve theoretical considerations of

the temporary trapping of a particle into QS-type motion. We will

say that a QS is ‘stable’ if it cannot move away from the vicinity of

�E-mail: mikkola@utu.fi

the planet. However, when the orbital elements vary enough to allow

the particle to change the type of motion (usually to horseshoe orbit)

it has ‘escaped’. Investigating the conditions for these transitions is

the main subject of this paper.

The plan of the paper is as follows. First, we consider the be-

haviour of a QS in terms of the elliptic orbit approximation. This

part is, in a sense, simple but helpful for a reader who is not an expert

in this phenomenon. Then the approximate perturbative equations of

motion are considered and finally a full secular theory is constructed

for obtaining a firmness condition for the QS motion. This requires

a numerical integration of a known function since analytical expres-

sions cannot be constructed. With today’s computers the evaluation

of the integrals is, however, not much more time consuming than

many of the functions that programmers take for granted.

2 C O - O R B I TA L M OT I O N S

There are three possible types of co-orbital motion of a small body

associated with a planet: the well-known Trojan ‘tadpole’ orbits

near the Lagrange points; horseshoe orbits along the planet’s orbit;

and QS motion remaining near the planet. Although regular co-

orbital motion involves small perturbations which change the orbit,

over one revolution the small body’s motion is close to a Keplerian

orbit. The longer-term motion, enforced by the perturbations in all

three cases, shows its special nature in a frame co-rotating with the

planet’s revolution. The three different types of orbits are illustrated

in Fig. 1. Here examples of the tadpole (TP) and horseshoe (HS)

orbits were computed using a planet’s mass of m = 10−3 M� (to

get wide enough orbits for illustration purposes), while for the QS
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Figure 1. A demonstration of the three types of co-orbital motions.

TP = tadpole (Trojan) motion, HS = horseshoe orbit and QS =
quasi-satellite.These were obtained by numerical integration of the equa-

tions of motion. To get wide horseshoe and tadpole orbits, the mass value of

m = 10−3 was used.

a value m = 3 × 10−6 M�, close to the mass of the Earth, was

used. For simplicity the planet’s orbit was taken as circular, of unit

semimajor axis, and with the small body in its plane. Similarly, for

the particle, initial values corresponding to a low eccentricity were

given.

We consider the QS motion in the framework of the elliptic re-

stricted three-body problem. This is justified by the fact that external

perturbations typically affect the planet and the asteroid in much the

same way so that the effect in their relative motion is not signifi-

cant. Exceptions occur usually only due to close approaches to other

planets.

Since the perturbations due to the planet change the orbital ele-

ments only slowly, a first approximation is simply the difference of

two elliptic motions. This difference can then be used to construct an

approximate secular theory of the motion. Due to the short distance

between the planet and the QS, such a complete theory is difficult

to construct and will remain approximate, and partly qualitative.

3 T H E O RY

We use the standard notations a, e, I , ω , � and M, for the semima-

jor axis, eccentricity, inclination, argument of perihelion, longitude

of the ascending node and the mean anomaly, respectively. For the

elements of the planet, the subscript 1, (e.g. M1, e1 and m1 for the

mean anomaly, eccentricity and the mass, respectively) is used. We

further introduce

α = a − a1

a1

, � = ω + �, (1)

the relative deviation of the semimajor axis from that of the planet

and longitude of perihelion, and

λ = � + M, θ = λ − λ1 (2)

as the mean longitude and its difference from that of the planet.

It is convenient to use the planet’s orbital plane as the xy-plane

and take the direction of the pericentre of the planet’s orbit as the

x-axis direction, so that

ω1 = �1 = I1 = 0, λ1 = M1.

This is the primary coordinate system used throughout this paper.

Especially the xy-plane will be set into the plane of motion of the

planet. Because the orbital elements are often available in the ecliptic

system, we give in Section 4.1 formulae for transforming orbital

elements into the system used in this paper.

Assuming that e, e1, s = sin (I/2) and θ are small quantities of

the same order of magnitude (call it ε), then

max(e, e1, s, θ ) ∼ ε � 1. (3)

A typical magnitude of ε ∼ 0.1 in the known examples. Since α

must be much smaller than that in any co-orbital motion, we can

assume α � ε and, thus, α can often be neglected in comparison

with the other small quantities. It is known that (Mikkola & Innanen

1997; Namouni 1999; Namouni, Christou & Murray 1999) in the

stable QS motion α ∼ √
m1/M�. Thus we can write√

m1

M�
<� α � ε, (4)

which can be used in the derivation of the approximate equations of

motion (note that this relation is written in the squared form in the

cited papers).

3.1 Geometry of the problem

To specialize the discussion to the QS state, we now look at some

of its properties. We will proceed to expand the coordinates of the

planet and of the QS to leading order in the small parameters (actu-

ally ε, defined in equation 3). For simplicity we assume

a = a1 = 1

and re-introduce later the real scale of the orbit.

We use several coordinate systems: heliocentric and planetocen-

tric, and rotating versions of both. The rotating coordinates rotate

with the planet (thus not with constant rate) such that the x-axis goes

through the Sun and the planet.

In Fig. 1, the QS-motion is illustrated in the simplest way: the

planet’s orbit is circular and the mutual inclination is zero. For the

QS-orbit the realistic value of e = 0.1 was adopted for this illustra-

tion. In the co-rotating heliocentric frame

x = 1 − e cos(M + θ ) + O(ε2) (5)

y = 2e sin(M + θ ) + O(ε2), (6)

approximates this orbit quite well (but the illustration was obtained

by numerical integration of the orbit).

In Fig. 2, the motion of a QS is illustrated in heliocentric coor-

dinates. Here the full line represents the motion of the planet and

short lines are drawn from the positions of the planet to those of

the QS (the dots) at the corresponding moments of time. One notes

that the asteroid stays on one side of the planet in inertial space.

The direction is that of the aphelion of the asteroid’s orbit [but see

equation (8) for the effect of the planet’s eccentricity].

Fig. 3 illustrates two QS orbits with different values of the phase-

difference angle θ but in planetocentric (non-rotating) coordinates.

One notes that the form and size of the relative orbit depend consid-

erably on the angle θ but that the QS stays preferably on one side

of the planet.

Finally, Fig. 4 illustrates the two (different θ ) orbits in the rotating

coordinate system. Here the trajectories look like two small ellipses

shifted by the amount θ . The ellipses originate from the epicyclic

motion (i.e. essentially from the eccentricity), which is not neces-

sarily related to QS motion, but a QS motion is characterized by

the libration of the angle θ (around zero) which causes the ellipse
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Figure 2. Motion of a QS in heliocentric coordinates. The full line illustrates

the planet’s motions. The dots represent the asteroid positions which are

connected with short strokes to the planet’s concurrent positions.
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Figure 3. Motion of a QS in planetocentric coordinates. The big blue spot

at origin is the planet. Two cases of QS trajectory are plotted: the green full

line is for θ = 0, and the red line with big starry dots is for θ = 0.05 In both

cases e = 0.1, e1 = 0, I = 0◦.

to move up and down (in this figure) in such a way that the planet

remains inside the ellipse.

(i) The planetocentric coordinates of the QS, with the planet in

its eccentric orbit as the guiding centre of epicyclic motion (Murray

& Dermott 2000), are


 ≈ [(3e1 − e1 cos(2M1) + e cos(2M1 − � )

−3e cos(� ) − 2θ sin(M1))/2,

(2θ cos(M1) − e1 sin(2M1)

+e(sin(2M1 − � ) − 3 sin(� )))/2,

2s sin(M1 − �)] ,
(7)

where s = sin(I/2) is half the sine of the mutual inclination of the

orbits.
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Figure 4. The same two orbits as in Fig. 3 but in the rotating coordinate

system. These are essentially ellipses with axis ratio 1:2. In the long term,

the centre of the ellipse oscillates back and forth (when θ librates around

zero), but in such a way that the planet remains inside the ellipse (in QS state

of motion). The colour coding is the same as in the previous figure.

(ii) The mean value of the planetocentric vector of the QS is

〈
〉 = −3

2
(e − e1) ≈ −3

2

⎛⎜⎝ e cos(� ) − e1

e sin(� )

O(ε2)

⎞⎟⎠ . (8)

The vectors e and e1 [here e1 = (e1, 0, 0)] are the eccentricity

vectors (or the Runge–Lenz vectors) of the asteroid and the planet,

respectively. Note that in any elliptic Kepler motion the position

vector average is

〈r〉 = −3

2
ae|a=1

= −3

2
e

from which the above follows.

(iii) In the rotating coordinate system, the planetocentric coor-

dinates are


r ≈

⎛⎜⎝ e1 cos(M1) − e cos(M1 − ω − �)

θ − 2e1 sin(M1) + 2e sin(M1 − ω − �)

2s sin(M1 − �)

⎞⎟⎠ . (9)

(iv) The asteroid crosses the orbital plane of the planet when

the z-component of 
r is zero. In our approximation M 1 = � at

this crossing of the planet’s orbital plane and the coordinates of this

point are


c ≈

⎛⎜⎝ −e cos(ω) + e1 cos(�)

θ − 2e sin(ω) − 2e1 sin(�)

0

⎞⎟⎠ (10)

or if M 1 = � + π


c ≈

⎛⎝ e cos(ω) − e1 cos(�)

θ + 2e sin(ω) + 2e1 sin(�)

0

⎞⎠ (11)

which turn out to have an important role in the stability of a QS (see

later).
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3.2 Equations of motion

The secular perturbing function in the heliocentric coordinates is

R = m1

〈
1

|r − r 1| − r · r 1

r 3
1

〉
, (12)

where 〈·〉 means time average. The use of this is justified if the

orbital elements do not change considerably during one period of

the planet. This is the case if the particle does not come too close to

the planet.

The usual Lagrange equations for the adopted elements α =
(a − a1)/a1, e, i , � , � and θ can be written in the form (with

V = √
1 − e2)

α̇ = 2

na2

∂R

∂θ
,

θ̇ = n − n1,

− 2

na2

∂R

∂α
+ V − V 2

na2e

∂R

∂e
+ 1 − cos(I )

na2V sin(I )

∂R

∂I
,

ė = V 2 − V

na2e

∂R

∂θ
− V

na2e

∂R

∂�
,

İ = cos(I ) − 1

na2V sin(I )

∂R

∂θ
− 1

na2V sin(I )

∂R

∂�
,

�̇ = V

na2e

∂R

∂e
+ 1 − cos(I )

na2V sin(I )

∂R

∂I
,

�̇ = 1

na2V sin(I )

∂R

∂I
.

(13)

As α and m1 are small, the main term in the equation for θ̇ is

θ̇ = n − n1 ≈ −3

2
n1α (14)

and thus

θ̈ = − 3

a2
1

∂R

∂θ
, (15)

which integrates to

1

2
θ̇2 = 3

a2
1

[Rx − R(θ )] , (16)

where Rx is an integration constant. In this the time dependence of

all the elements, other than θ has been neglected. This is justified

because θ is by far the fastest variable (Mikkola & Innanen 1997;

Namouni 1999) and the dependence of R on α can be neglected in

a first approximation.

A more detailed demonstration of this is as follows. The time

derivative of R can be written as

Ṙ = ∂R

∂θ
θ̇ +

∑
q �=θ

∂R

∂q
q̇, (17)

where q has been used as a generic notation for the orbital elements.

From equations (13) we see that

θ̇ ∝ α ∼
√

m1

M�
, but q̇ = O(m1) for q �= θ.

Consequently, in the expression for Ṙ, the latter terms are smaller

than the θ -term by a factor of the order of
√

m1 which is very small

(for terrestrial planets at least). Thus the approximation Ṙ = ∂R
∂θ

θ̇

is justified.
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Figure 5. The behaviour of α as function of θ in stable QS motion. In this

illustration the planet’s mass was m = 3 × 10−6 and e1 = 0, e = 0.1, I = 0.

Data were obtained by numerical integration of the full equations of motion.

The secular equations would describe only the average motion, that is, the

short-period fluctuations that are clear here would not appear in the solution

of the secular equations discussed in the text.

3.3 QS-motion

In Fig. 5, the motion of the relative change of semimajor axis α

versus the angle θ is illustrated over one period of θ motion. The

results are from direct numerical integration of the restricted three-

body-problem. Thus, the short-period term (of period = one plane-

tary period) is present and clearly visible in the figure. The secular

equations (14) and (15) give this motion without the short period

part. As will be seen in the next sections, a first approximation for

the secular motion is a (nearly) harmonic oscillation of the variables

θ and α. Note that this motion of θ corresponds to back and forth os-

cillations of the centre of the ellipse in Fig. 4. This, not the epicyclic

motion, is the real defining point of QS motion since the epicyclic

motion would take place even without any gravitational pull from

the planet (Brasser et al. 2004).

However, the (α, θ ) figure was obtained for zero inclination, in

which case a stable motion is possible, while high enough inclination

produces circumstances in which a particle can enter the QS-state

of motion, stay there for some time and finally exit that state of

motion.

3.4 Approximation by expansion

The secular perturbing function can be approximated by

R = m1

a1

〈
1




〉
, (18)

because the indirect term is negligible in comparison with the direct

one.

Using the above expressions for components of Δ in (10) and,

following Mikkola & Innanen (1997), we define σ , ψ and w by

writing

σ cos(ψ) = e cos(� ) − e1, (19)

σ sin(ψ) = e sin(� ), (20)

and

w = M1 − ψ. (21)
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This leads to the expression


2 = σ 2[1 + 3 sin2(w)] + 4s2 sin2(
 + w)

+ 4σθ sin(w) + θ 2, (22)

where


 = ψ − �. (23)

After this the averaging over time is replaced by averaging over the

angle w.

By (19) and (20) we have σ = e2 − 2ee1 cos (� ) + e2
1, but it is

more natural to use

σ = |e − e1|, (24)

which is the same as the previous expression to the order of the the-

ory. The meaning of the angles ψ and 
 can be found by considering

their trigonometric functions: one notes that ψ gives the direction

of the mean planetocentric position vector (see equation 8) and for


 one obtains

sin(
) = e sin(ω) + e1 sin(�)

σ
(25)

and

cos(
) = e cos(ω) − e1 cos(�)

σ
, (26)

which have a connection with the point at which the QS crosses the

orbital plane of the planet (see equation 8). Thus we have found for

each quantity in the expression for 
2 a clear ‘physical’ meaning that

is independent of the coordinate system. Unfortunately, evaluation

of the angle 
 still requires complicated computations since the

angles ω and � must first be obtained in the planet’s system of

coordinates (Section 4.1).

The problem is now to evaluate the average of 1/
 over the angle

w. To further simplify the notation we set

1



= 1

σ
U , (27)

where

U = 1√
1 + 3 sin2(w) + 4S2 sin2(
 + w) + 4T sin(w) + T 2

,

and S = s/σ , T = θ/σ .

Since the expression under the square root is a quadratic poly-

nomial of T , we can use the well-known expansion in terms of

Legendre polynomials:

〈U 〉 =
∞∑

n=0

〈
1


2n+1
0

P2n

(
2 sin(w)


0

)〉
T 2n, (28)

where


2
0 = 1 + 3 sin2(w) + 4S2 sin2(
 + w). (29)

and we have used the fact that all odd-order terms average to zero.

Once the parameters S and 
 are numerically known it is easy to

obtain the expansion coefficients by numerical averaging over w.

3.5 Near-planar case

Analytically the averaging does not seem possible in a simple way.

However, following Mikkola & Innanen (1997), a first approxima-

tion valid for S � 1, T � 1 can be obtained. With these (very

restrictive) assumptions, U can be expanded in powers of S and T
(considering them to be quantities of the same order of magnitude).

Averaging the resulting expansion is easy by numerical integration.

To improve the convergence, it seems natural to convert the result

back to the form 1/
√

series... Since we are mainly interested in the

stability of motion, a further expansion to second order in T gives

〈U 〉 = a0

(
1


e
+ a2


3
e

T 2 + ..

)
(30)

where

a0 = 0.686 440 250 309 176


2
e = 1 + S2[1.123 16 − 0.5386 cos(2 
)]

+ S4[−0.676 025 + 0.692 779 cos(2 
)

− 0.109 125 cos(4 
)] (31)

and

a2 = 0.073 07 − [0.1423 + 0.2347 cos(2
)]S2. (32)

Here we have carried out the original expansion to fourth order

(taking S and T to be small quantities of the same order). This is an

improvement to Mikkola & Innanen (1997) where all the expansions

were carried only to second order and the result did not suggest a

region of instability at all (and was thus valid only for very small

inclinations).

3.6 Possibility of QS motion

Because of equation (15), one can now find regions of possible
stability and guaranteed instability (i.e. possibility/impossibility of

long-lasting QS-type motion), by considering the sign of the second-

order term in the expansion for 〈U〉, that is, the sign of a2. A more

accurate version is obtained by numerically averaging the second

derivative of U by

〈UT T 〉 =
〈

−
−3
0 + 12 sin2(w)


5
0

〉
. (33)

where 
2
0 is defined by (29).

In Fig. 6, the results obtained from the expansion coefficient a2

are compared with the more accurate expression (33). One sees that

the above series approximation gives qualitatively correct results,

but quantitatively there is a clear discrepancy. One notes that the

instability is guaranteed if inclination is large enough (S � 0.5 i.e.

I ∼ σ ) and 
 is near 0 or π while stability is possible for I very

small and/or 
 is near π/2.

In Fig. 7, the secular (effective) potential 〈U〉 is plotted as a func-

tion of T for selected values of S = sin (I/2)/σ at 
 = 0. For S = 0
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Figure 6. Limit of guaranteed instability (i.e. zero of the second derivative

of 〈U〉 with respect to θ ) as obtained by numerical integration of (33) (thick

black line) and by the series approximation (32) (thin red line).
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Figure 7. Behaviour of 〈U(T)〉 − 〈U(0)〉 for different values of (S = 0, 0.1,

0.2, 0.3, 0.4 and 0.5). The uppermost curve (for S = 0) has a logarithmic

infinity at T = 2, suggesting persistent stability, while the lowermost (i.e.

S = 0.5 curve) is entirely convex and thus guarantees instability. The curves

are given for 
 = 0.

there is an infinite wall at T = 2. This corresponds, mathematically,

to a collision of the planet and the QS (which cannot occur in our

theory). For larger values of S, the maxima of the potential are finite

but at T = 0 (i.e. θ = 0) there is a minimum which makes stable

oscillation possible. Finally, near S = 0.5 the potential becomes

completely convex and stable motion is not possible.

If the angle 
 ∼ π/2, however, then all the curves resemble the

plotted curve for S = 0, that is, there is the infinite potential wall.

This is because 
 = π/2 means that the crossing points are just

ahead of and behind the planet in the orbit and, mathematically, a

collision is possible. This is thus a stable situation (the region in the

middle of Fig. 6).

A near-planet asteroid that is not (yet) in a QS-state of motion can

enter that status when 
 is in the unstable region by precession of


 to the stable region. The destabilization is the reverse process: the

angle 
 keeps precessing until it enters again the unstable region.

However, the stability does not depend only on the angle 
, if the

θ motion has too much energy, that is, θ̇ ≈ − 3
2
n1(a − a1)/a is too

large, then the quantity Rx in (16) is so large that the ‘θ -energy’ is

higher than the maximum of the secular potential R(θ ) and an entry

or exit can happen. A capture, for shorter or longer time, happens

when an entry occurs and then 
 precesses such that the secular

potential R(θ ) maxima become too high for the asteroid to escape.

Such a capture can be quite brief, as in the case of 2003 NY107, or

fairly lengthy as for 2004 GU9 (see Section 5).

The importance of the angle 
 in the stability and the fact that

the crossing-point coordinates in the orbital plane of the planet are

[by (10) and (8)]

xc = ±σ cos(
) (34)

yc = θ ± 2σ sin(
), (35)

leads us to a physical interpretation of the stability: consider the

system in the spirit of averaging theory, from the point of view

of the QS: replace the attracting planet by a mass ring, the points

of which are located at the head of the vector xr, yr, zr; when the

angle 
 ∼ π/2 the crossing points are located in front of and just

behind the planet in its orbit around the Sun. In this situation, the

QS cannot move out of the neighbourhood of the planet without a

close approach. If, on the other hand, 
 = 0, the crossing points are

in inferior and superior conjunction. In this case the QS can move

‘through’ the ring (provided the inclination is large enough) and

escape from the vicinity of the planet.

3.7 Full secular theory of θ oscillation

The full secular perturbing function is

R = m1

2π

∫ 2π

0

(
1

|r − r 1| − r · r 1

r 3
1

)
dM1. (36)

When the orbital elements for both the planet and the QS are given,

one can evaluate the above integral numerically. One obtains it, as

a function of θ , using for the mean anomalies the relation M = M 1

− � + θ . Then, by

1

2
θ̇2 + 3

a2
1

R(θ ) = 3

a2
1

Rx , (37)

where Rx is an integration constant to be evaluated from the initial

values, one obtains the period of θ -oscillation

P = 2

∫ θmax

θmin

dθ√
(6/a2

1 )[Rx − R(θ )]
. (38)

Here the integration limits θ min, θ max must be obtained by solving

the equation

3

a2
1

R(θmax) = 1

2
θ̇2

0 + 3

a2
1

R(θ0), (39)

where θ̇0 = n − n1 and all the necessary quantities are evaluated

at the starting epoch. The value of θ min ≈ −θ max must be obtained

similarly. Note that the function R(θ ) is not exactly symmetrical

(although it is so in the approximate theory) and thus both ends

must be obtained separately.

For the QS to be stable, it is important that the quantities θ min

and θ max exist. If these boundaries cannot be found (essentially in

the region T < 2, that is, θ < |e −e1|), then the ‘θ -energy’ is at a

higher level than the maximum of the effective potential. In other

words, the difference of the semimajor axes is too large and there is

no stable motion.

4 C R I T E R I A F O R QUA S I - S AT E L L I T E M OT I O N

Here we first describe some of the necessary computational tools and

then give the conditions under which an asteroid may be considered

to be in a QS state of motion.

4.1 Orbital angles in the planet’s system

To obtain the orbital elements needed in the theory, one must convert

to the system in which the xy-plane is the orbital plane of the planet

and the x-axis is directed to the perihelion of the planet. If one deals

with Earth QSs, this is particularly easy as the inclination of the

Earth is very small: one simply rotates around the z-axis by the

amount −� 1. Considering the orbital angles

I , ω, and �,

the only modification is to replace

� → � − �1

(note that � = ω + � must be computed only after this operation,

that is, � is replaced by � − � 1).

More generally (and more accurately) one must compute the di-

rection vectors P, Q and W and carry out the rotation properly by

the following formulae.
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First, one evaluates the P, Q, W-vectors as

P =

⎛⎜⎝+ cos(ω) cos(�) − sin(ω) sin(�) cos(I )

+ cos(ω) sin(�) + sin(ω) cos(�) cos(I )

+ sin(ω) sin(I )

⎞⎟⎠ ,

Q =

⎛⎝ − sin(ω) cos(�) − cos(ω) sin(�) cos(I )

− sin(ω) sin(�) + cos(ω) cos(�) cos(I )

+ cos(ω) sin(I )

⎞⎠
and

W =

⎛⎜⎝ + sin(�) sin(I )

− cos(�) sin(I )

+ cos(I )

⎞⎟⎠ ,

(40)

for both the planet and the asteroid. To obtain the angles i, ω and �

in the said system, one uses

Pz = Wp · Pa = + sin(ω) sin(I )

Qz = Wp · Qa = + cos(ω) sin(I )

Wx = Pp · Wa = + sin(�) sin(I )

Wy = Qp · Wa = − cos(�) sin(I )

Wz = Wp · Wa = + cos(I ),

where the subscripts ‘p’ and ‘a’ indicate the planet and the asteroid,

respectively. Consequently the angles in the planet’s system become

ω = atan(Pz/Qz)

� = atan(−Wx/Wy)

and

I = atan
(√

W 2
x + W 2

y /Wz

)
.

4.2 Period evaluation

It is not possible to do the integration in (38) analytically, so that

numerical evaluation is the only option.

First, compute the P, Q and W vectors in the planet’s system ac-

cording to the above. Then, in this system, the asteroid’s coordinates

are given by

r = a[P(cos(E) − e) +
√

1 − e2 Q sin(E)] (41)

and those of the planet

xp = a1[cos(E1) − e1], yp = a1

√
1 − e2

1 sin(E1), zp = 0. (42)

In the integration of

R = m1

2π

∫ 2π

0

(
1

|r − r 1| − r · r 1

r 3
1

)
dM1, (43)

one gives a value for the mean anomaly M1 of the planet, obtains

that of the QS by

M = M1 − � + θ, (44)

solves Kepler’s equation, computes the coordinates (using a = a1)

and obtains the integrand. The best numerical method for evaluating

this integral is probably the midpoint or trapezoidal rule because the

integrand is periodic.

Obtaining the period is not completely trivial since the integrand

in (38) has singularities at the ends of the integration interval. How-

ever, the transformation

θ = (θmax − θmin)

2
cos(χ ) + (θmax + θmin)

2
,

eliminates those square-root singularities in the period integrand

and gives

P = (θmax − θmin)

∫ π

0

sin(χ )dχ√(
6/a2

1

)
[Rx − R(θ (χ ))]

. (45)

Note that if R(θ ) is purely quadratic in θ , then the integrand above

is constant. Thus, in general, the integrand changes only slowly and

the numerical integration is easy.

4.3 Testing QS-state of motion

For oscillatory motion to be possible in the secular θ -potential R(θ ),

the equation

R(θ ) = R(θ0) + a2
1

6
θ̇ 2

0

must have two solutions θ min and θ max (which satisfy θ min ≈ −θ max).

Here θ̇0 = n −n1 ≈ − 3
2
n1(a −a1)/a1 computed at the epoch. From

the theory (mainly from Fig. 7) we see that the solutions θ min and

θ max should be in the interval |θ | < 2 |e −e1 |, which condition must

be satisfied initially as well. Note that the above conditions may be

satisfied for a convex potential, but then there is no real period for

then the quantity under the square root is negative.

The ‘algorithm’ for a first look at whether an asteroid is a QS may

be summarized as follows.

(i) Rotate the orbital angles to the system in which the planet’s

orbital plane is the xy-plane. Normally, this can be done (to sufficient

accuracy) by evaluating

�p = � − �1

and computing new

�new = ω + �new.

(ii) Compute the mean longitude difference at epoch

θ0 = M + �new − M1

and the relative eccentricity σ from

σ 2 = |e − e1| ≈ e2 + e2
1 − 2ee1 cos(�new).

(iii) Test if

|θ0| < 2σ.

If the answer is yes, a QS-state is possible.

(iv) Take for θ̇ the value

θ̇0 = n − n1 ≈ −3

2
n1

a − a1

a1

and obtain the constant Rx from

Rx = R(θ0) + a2
1

6
θ̇2

0 .

(v) Tabulate R(θ ) for, say, −3 < θ < 3σ and plot the result

together with the value of Rx to check if stable motion is possible.

This can be done using the algorithm described in the beginning of

Section 4.2.
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Figure 8. Geocentric motion of 2003 YN107, which is a short-term visitor

in an Earth-QS orbit. The evolution of the orbit is mainly due to the change

of the mean longitude difference θ . This asteroid is a transient QS, making

only one θ -oscillation in the QS-state of motion.

5 E X A M P L E S

There are some known asteroids that are now or have been/will be

in QS-orbit about the Earth. Such examples are Cruithne (Wiegert,

Innanen & Mikkola 1997), 2002 AA29 which is at present in a

horseshoe orbit, but will enter a QS orbit in the future and 2003

YN107 which is at present in a transient QS orbit (Connors et al.

2002, 2004). A most interesting case is 2004 GU9 which is at

present in QS orbit, near the middle of its near 1000 yr stay in

QS trajectory.

Fig. 8 illustrates the numerically integrated motion of 2003

YN107 in geocentric non-rotating coordinates. One notes that the

asteroid stays preferably to one side of the Earth in accordance with

the theory. However, this asteroid is a transient QS only: the QS-

state involves only one θ -oscillation period. It also comes so close

to the Earth that the eccentricity changes considerably during this

period, thus making the usefulness of the theory questionable.

In Fig. 9, the evolution of the semimajor axis of 2004 GU9 is

plotted as a function of time over a period of 3000 yr centred at the

present epoch. It is clear that this body used to be in a horseshoe

orbit and will again exit to such an orbit, while in between it stays

near the Earth in a QS state of motion.

5.1 A numerical example

For 2004 GU9, we obtain


 = −1.438 826 08, σ = 0.150 253 787, S = 0.790 699 503,

[using Keplerian elements at epoch 53200 (MJD)]. The expansion

R ≈ 0.000 010 4744 + 0.000 029 3191 θ2 + 0.000 180 41 θ 4

+ 0.001 348 77 θ6 + 0.010 9462 θ 8, (46)

then follows by numerically evaluating the coefficients in the ex-

pansion (28).

 0.995

 0.996

 0.997

 0.998

 0.999

a   1

 1.001

 1.002

 1.003

 1.004

 1.005

-1500 -1000 -500 Years  0  500  1000  1500

QS-phase

horseshoe horseshoe

Figure 9. Behaviour of the semimajor axis of 2004 GU9, which stays as

an Earth-QS for about a thousand years. At the present epoch it is near the

halfway point of its stay near the Earth.

By (45) one can use this expansion to compute the θ -oscillation

periods in different approximations

Approximations Years

P2 = 75.5

P4 = 69.1

P6 = 68.1

P8 = 67.9

Pa2
= 62.2

Psecular = 67.4

Pnum.int = 66.5,

where the subscripts (2, 4, 6 and 8) indicate the highest-order term

taken into account. The result Pa2
was evaluated using the approxi-

mation (30), while Psecular was obtained using the full secular theory

(with θ̇0 = 0.000 658 57). The ‘true’ period Pnum.int was estimated

from direct numerical integration of the motion. This estimation

is difficult and there is an uncertainty in the last significant figure

given.

One can conclude that the pure harmonic oscillator approximation

P2 is not very accurate, while the full secular model differs rather

little from the accurate (numerical integration) result. Furthermore,

the result Pa2
looks reasonable but in fact this is an approximation

for the P2 result. The difference is more than 13 yr and thus (30)

is not very useful for this case. This is not surprising because that

expression was derived assuming a nearly planar system.

Note that the value of 
 = −1.438 826 08 is not far from −π/2

which is the most stabilizing value. This qualitatively agrees with

the fact that 2004 GU9 is just about in the middle of its stay as a

QS. Fig. 10 illustrates the actual evolution of the angle 
 during the

QS-episode of this asteroid. The angle changes from about 324◦ to

215◦. Taking into account the periodicity (equal to π) with respect

to 
, we can compute that in Fig. 6 this corresponds to 
-motion of

2.51 → 0.61 (radians). Thus the agreement of this with our theoret-

ical considerations seems good. It should be stressed here that the

expansion coefficients are not constant; changing somewhat even

during a single θ -oscillation period, and over a longer time, the

coefficients may even change their signs.

The different approximations for the θ -potential are compared

in Fig. 11 using 2004 GU9 once more as an example. Our first-

order approximate perturbing function R ≈ m1

a1
〈U 〉 always gives a

θ -potential that is completely symmetrical. This is the thin curve
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Figure 10. Evolution of 
 during the stability period of 2004 GU9. One

notes that 2004 GU9 is at the halfway point of its stay in the QS-motion.
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Figure 11. Comparison of R(T) − R(0) for 2004 GU9 in different approx-

imations (as earlier T = θ/σ ). The symmetrical curve marked ‘appr.sec.’

was obtained as m1
a1

〈U 〉, the equally symmetrical curve ‘series’ represents

the function in equation (46) and the thick line ‘secular’ is the full secu-

lar θ potential (equation (36). One notes the clear asymmetry of this best

approximation.

marked ‘appr.sec.’ in the figure. It approximates rather well the

more accurate (‘secular’) function for T = θ/σ < 2. The power-

series expansion (46) is also good for not too large T . However, the

full secular theory (thick line marked ‘secular’ in the figure) behaves

somewhat differently: there is a clear asymmetry, which allows an

asteroid to enter the QS-state (from a horseshoe orbit), climbing

over the lower side of the potential wall and then bouncing back

from the higher wall to re-enter the horseshoe orbit. This requires

a sufficiently high value of the semimajor axis difference which

defines the θ -energy through the expression for θ̇ .

In the figure the line marked ‘range of motion’ indicates the value

by which the constant of integration Rx exceeds the near-zero min-

imum of the potential. This therefore also indicates the range of

allowed oscillation of θ .

The amount of asymmetry depends on the eccentricities, inclina-

tions and the mutual orientations of the orbits. Since the first-order

approximation does not give any asymmetry, one must use that the-

ory with care and, preferably, rely on the full secular theory.
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Figure 12. The behaviour of α as function of θ in the motions of 2003

YN107 (red squares and blue dots) and 2004 GU9 (line). For details see the

text.

Fig. 12 illustrates the relations between θ and α for the two as-

teroids 2003 YN107 and 2004 GU9. These data were obtained by

accurate numerical integration of the real system. The big (red)

squares represent points where the algorithm to compute the period

gives a result for 2003 YN107 (and that is about correct), while the

small (blue) dots are plotted where the minima and maxima for θ

were not found (i.e. the θ -energy was above the smaller of the max-

ima in the potential.) Thus in this case the theory does not apply

reliably. This is because the asteroid in question is only just about

in the domain of QS state of motion and the short period variations

in α are comparable to the secular ones.

The narrow elliptic curve (with some small oscillations on it) gives

the (θ , α) relation for 2004 GU9. This behaviour is very similar to

that illustrated in Fig. 5 and the theory works well here.

6 C O N C L U S I O N S

We have presented a fairly simple analytical theory of QS motion

and have given an algorithm useful in practice to detect asteroids in

QS motion. A straightforward numerical example applied to a real

asteroid has been provided.

The full secular theory suggests that the leading order analytical

theory is not sufficient. In particular, it does not reveal the asymmetry

of the effective θ -potential at all. Thus the full secular theory, even

if it cannot be written in terms of elementary functions, must be

preferred. The numerical effort to obtain the results from that theory

is, however, relatively minor and does not form a serious obstacle.

The main results concerning stability are as follows.

(i) Permanently stable QS-motion is possible only for small

enough inclination, that is, (approximately) for

I < |e − e1|.
Such primordial QS-asteroids are, however, not yet known.

(ii) For large enough inclination

I > |e − e1|,
suitable relative semimajor axis difference α and appropriate orbit

orientation, a temporary capture to QS-motion can take place.

(iii) For the capture, the orientation condition may be written as


 ≈ kπ, k = 0, 1, 2, ...
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The length of the QS-period depends in a fairly complicated way

on the orbital elements. As the examples show, this can vary from a

brief episode lasting only a few years to a time interval of a thousand

years.

(iv) One must be aware of that the theory does not always give

a definitive answer for whether an asteroid is in QS-motion or not.

Thus, especially if the result is affirmative, one must carefully check

if the situation is a ‘just about’ one.

Whereas a complete theory of QS motion remains elusive, we hope

that our results prove useful in the search of QSs.
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